DOI QR코드

DOI QR Code

가금 콕시듐증을 일으키는 Eimeria spp.의 포자충 항원에 결합하는 닭의 재조합 항체(ScFv)의 개발

The Development of Chicken Recombinant Single-chain Fv (ScFv) Antibody Reactive with Sporozoite Antigen of Eimeria spp. which Causes Avian Coccidiosis

  • 박동운 (창원대학교 자연과학대학 미생물학과) ;
  • 김언동 (창원대학교 자연과학대학 미생물학과) ;
  • 김성헌 (창원대학교 자연과학대학 미생물학과) ;
  • 한재용 (서울대학교 농업생명과학대학 농생명공학부 WCU 바이오모듈레이션) ;
  • 김진규 (창원대학교 자연과학대학 미생물학과)
  • Park, Dong-Woon (Department of Microbiology, College of Natural Sciences, Changwon National University) ;
  • Kim, Eon-Dong (Department of Microbiology, College of Natural Sciences, Changwon National University) ;
  • Kim, Sung-Heon (Department of Microbiology, College of Natural Sciences, Changwon National University) ;
  • Han, Jae-Yong (WCU Biomodulation, Department of Agricultural Biotechnology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jin-Kyoo (Department of Microbiology, College of Natural Sciences, Changwon National University)
  • 투고 : 2011.10.04
  • 심사 : 2011.11.22
  • 발행 : 2011.12.31

초록

닭의 단일 클론 항체인 13C8 항체는 조류의 콕시듐증을 유발하는 것으로 알려진 Eimeria acervulina의 포자충(sporozoites) 항원에 결합하는 닭 항체이다. 그러나 닭 하이브리도마 유전자의 불안정성 때문에 분비되는 항체의 생산량이 낮은 단점이 있다. 이러한 단점을 보완하기 위해 hybridoma로 부터 항체의 중사슬 가변 부위(VH)유전자와 경사슬 가변 부위(VL) 유전자를 증폭하여 linker peptide로 연결해준 재조합 ScFv 항체 유전자를 구축하고, E. coli를 형질 전환시켜 재조합 단백질로 발현 정제하였다. ELISA 분석 결과 재조합 13C8 ScFv 항체는 세 종류의 Eimeria spp.에 대해 모두 항원 결합력을 나타내었으며, 염기서열 분석을 수행하여 germline sequence와 비교한 결과 닭 항체유전자의 다양성(diversity)은 pseudogene들의 gene conversion 기작에 의해 이루어짐을 제시해 주었다.

The chicken monoclonal antibody (mAb), 13C8, reacts with sporozoite antigens of Eimeria spp. which causes avian coccidiosis. Since this mAb was produced at low amount due to genetic instability of chicken hybridoma, a recombinant 13C8 single-chain Fv (ScFv) antibody was constructed by amplification of the variable domain of heavy (VH) and light chain (VL) genes of antibody derived from chicken hybridoma. The constructed 13C8 ScFv was successfully expressed in E. coli and purified as a soluble form. In ELISA analysis, this recombinant 13C8 ScFv antibody showed antigen binding activity as the original mAb. In addition, nucleotide sequence comparison of 13C8 gene to the germline chicken VL and VH genes suggested that the gene conversion with $V{\lambda}$ and VH pseudogenes might contribute to the diversification of VL and VH genes in chickens.

키워드

참고문헌

  1. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M 1988 Single-chain antigen-binding proteins. Science 242:423-426. https://doi.org/10.1126/science.3140379
  2. Chapman HD 1993 Resistance to anticoccidial drugs in fowl. Parasitol Today 9:159-162. https://doi.org/10.1016/0169-4758(93)90137-5
  3. Hayden MS, Gilliland LK, Ledbetter JA 1997 Antibody engineering. Curr Opin Immunol 9:201-212. https://doi.org/10.1016/S0952-7915(97)80136-7
  4. Huston JS, Mudgett-Hunter M, Tai MS, McCartney J, Warren F, Haber E, Oppermann H 1991 Protein engineering of singlechain Fv analogs and fusion proteins. Methods Enzymol 203:46-88. https://doi.org/10.1016/0076-6879(91)03005-2
  5. Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C 1991 Sequences of proteins of immunological interest. U.S. Dept Health and Human Services, NIH publication No. 91-3242. 5th ed.
  6. Kim JK, Tsen MF, Ghetie V, Ward ES 1994 Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur J Immunol 24:542-548. https://doi.org/10.1002/eji.1830240308
  7. Lawn AM, Rose ME 1982 Mucosal transport of Eimeria tenella in the cecum of the chicken. J Parasitol 68:1117-1123. https://doi.org/10.2307/3281101
  8. Lillehoj HS, Lillehoj EP. 2000 Avian coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Dis 44:408-425. https://doi.org/10.2307/1592556
  9. McCormack WT, Thompson CB 1990 Chicken IgL variable region gene conversions display pseudogene donor preference and 5' to 3' polarity. Genes Dev 4:548-558. https://doi.org/10.1101/gad.4.4.548
  10. Nishinaka S, Akiba H, Nakamura M, Suzuki K, Suzuki T, Tsubokura K, Horiuchi H, Furusawa S, Matsuda H 1996 Two chicken B cell lines resistant to ouabain for the production of chicken monoclonal antibodies. J Vet Med Sci 58:1053-1056. https://doi.org/10.1292/jvms.58.11_1053
  11. Reynaud CA, Anquez V, Grimal H, Weill JC 1987 A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 48:379-388. https://doi.org/10.1016/0092-8674(87)90189-9
  12. Reynaud CA, Dahan A, Anquez V, Weill JC 1989 Somatic hyperconversion diversifies the single Vh gene of the chicken with a high incidence in the D region. Cell 59:171-183. https://doi.org/10.1016/0092-8674(89)90879-9
  13. Sasai K, Lillehoj HS, Matsuda H, Wergin WP 1996 Characterization of a chicken monoclonal antibody that recognizes the apical complex of Eimeria acervulina sporozoites and partially inhibits sporozoite invasion of $CD8^+$ T lymphocytes in vitro. J Parasitol 82:82-87.
  14. Verma R, Boleti E, George AJ 1998 Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 216:165-181. https://doi.org/10.1016/S0022-1759(98)00077-5
  15. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR 1994 Making antibodies by phage display technology. Annu Rev Immunol 12:433-455. https://doi.org/10.1146/annurev.iy.12.040194.002245
  16. Yamanaka HI, Inoue T, Ikeda-Tanaka O 1996 Chicken monoclonal antibody isolated by a phage display system. J Immunol 157:1156-1162.