DOI QR코드

DOI QR Code

ALTERNATE SIGNS (Aκ) PROPERTY IN BANACH SPACES

  • Cho, Kyugeun (Bankmok College of Basic Studies Myong Ji University) ;
  • Lee, Chongsung (Department of Mathematics education Inha University)
  • Received : 2011.07.26
  • Accepted : 2011.08.25
  • Published : 2011.09.30

Abstract

In this paper, we define the alternate forms of property ($A_{\kappa}$) and study their implications.

Keywords

References

  1. A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91{94. https://doi.org/10.4064/sm-42-1-91-94
  2. K.G. Cho and C.S. Lee, Alternate signs averaging properties in Banach space, J. Appl. Math. Comput. 16 (2004), 497-507.
  3. S. Guerre-Delabriere, Classical Sequences in Banach space, Monogr. Textbooks Pure Appl. Math. 166, 1992.
  4. S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J. 45 (1938), 188-193.
  5. C.S. Lee and K.G. Cho, Some Geometric Property of Banach space-Property ($C_k$), Korean J. Math. 17 (2009), 237-244.
  6. T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57. https://doi.org/10.4064/sm-23-1-53-57
  7. J.R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369-374. https://doi.org/10.1017/S0305004100054025
  8. C.J. Seifert, The dual of Baernstein's space and the Banach-Saks property, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978), 237-239.

Cited by

  1. WEAK PROPERTY (βκ) vol.20, pp.4, 2011, https://doi.org/10.11568/kjm.2012.20.4.415