References
- A. Baernstein, On reflexivity and summability, Studia Math. 42 (1972), 91{94. https://doi.org/10.4064/sm-42-1-91-94
- K.G. Cho and C.S. Lee, Alternate signs averaging properties in Banach space, J. Appl. Math. Comput. 16 (2004), 497-507.
- S. Guerre-Delabriere, Classical Sequences in Banach space, Monogr. Textbooks Pure Appl. Math. 166, 1992.
- S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J. 45 (1938), 188-193.
-
C.S. Lee and K.G. Cho, Some Geometric Property of Banach space-Property (
$C_k$ ), Korean J. Math. 17 (2009), 237-244. - T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57. https://doi.org/10.4064/sm-23-1-53-57
- J.R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), 369-374. https://doi.org/10.1017/S0305004100054025
- C.J. Seifert, The dual of Baernstein's space and the Banach-Saks property, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978), 237-239.
Cited by
- WEAK PROPERTY (βκ) vol.20, pp.4, 2011, https://doi.org/10.11568/kjm.2012.20.4.415