References
- E. Artin, Theorie der Zopfe, Abh. Math. Sem. Univ. Hamburg 4 (1926), 47-72.
- C.-F. Bodigheimer and U. Tillmann, Stripping and splitting decorated mapping class groups, Cohomological methods in homotopy theory (Bellaterra, 1998), 47-57, Progr. Math., 196, Birkhauser, Basel, 2001.
- F. R. Cohen, T. J. Lada, and J. P. May, The homology of iterated loop space, Lecture Notes in Mathematics 533, Springer-Verlag, 1976.
- S. Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. (2) 173 (2) (2011), 705-768.
- J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (2) (1985), 215-249. https://doi.org/10.2307/1971172
- A. Hatcher and K. Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (3) (1998), 633-655. https://doi.org/10.1112/S0024610798006644
- A. Hatcher and K. Vogtmann, Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004), 1253-1272. https://doi.org/10.2140/agt.2004.4.1253
- N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Algebra i Analiz 1 (3) (1989), 110-126.
- N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Leningrad Math. J. 1 (3) (1990), 675-691.
- M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math. (2) 71 (1960), 16-42. https://doi.org/10.2307/1969878
- J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (3) (1978), 347-350. https://doi.org/10.1090/S0002-9939-1978-0494115-8
- G. Segal, Configuration spaces and iterated loop spaces, Invent. Math. 21 (1973), 213-221. https://doi.org/10.1007/BF01390197
- U. Tillmann, Artin's map in stable homology, Bull. Lond. Math. Soc. 39 (6) (2007), 989-992. https://doi.org/10.1112/blms/bdm075
- J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology 11 (1972), 349-370. https://doi.org/10.1016/0040-9383(72)90031-6