DOI QR코드

DOI QR Code

THE HOMOLOGY HOMOMORPHISM INDUCED BY HARER MAP

  • Received : 2011.10.20
  • Accepted : 2011.11.30
  • Published : 2011.12.30

Abstract

We study a natural map from the braid group to the mapping class group which is called Harer map. It is rather new and different from the classical map which was studied in 1980's by F. Cohen, J. Harer et al. We show that this map is homologically trivial for most coefficients by using the fact that this map factors through the symmetric group.

Keywords

References

  1. E. Artin, Theorie der Zopfe, Abh. Math. Sem. Univ. Hamburg 4 (1926), 47-72.
  2. C.-F. Bodigheimer and U. Tillmann, Stripping and splitting decorated mapping class groups, Cohomological methods in homotopy theory (Bellaterra, 1998), 47-57, Progr. Math., 196, Birkhauser, Basel, 2001.
  3. F. R. Cohen, T. J. Lada, and J. P. May, The homology of iterated loop space, Lecture Notes in Mathematics 533, Springer-Verlag, 1976.
  4. S. Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. (2) 173 (2) (2011), 705-768.
  5. J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (2) (1985), 215-249. https://doi.org/10.2307/1971172
  6. A. Hatcher and K. Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (3) (1998), 633-655. https://doi.org/10.1112/S0024610798006644
  7. A. Hatcher and K. Vogtmann, Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004), 1253-1272. https://doi.org/10.2140/agt.2004.4.1253
  8. N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Algebra i Analiz 1 (3) (1989), 110-126.
  9. N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Leningrad Math. J. 1 (3) (1990), 675-691.
  10. M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math. (2) 71 (1960), 16-42. https://doi.org/10.2307/1969878
  11. J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (3) (1978), 347-350. https://doi.org/10.1090/S0002-9939-1978-0494115-8
  12. G. Segal, Configuration spaces and iterated loop spaces, Invent. Math. 21 (1973), 213-221. https://doi.org/10.1007/BF01390197
  13. U. Tillmann, Artin's map in stable homology, Bull. Lond. Math. Soc. 39 (6) (2007), 989-992. https://doi.org/10.1112/blms/bdm075
  14. J. B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology 11 (1972), 349-370. https://doi.org/10.1016/0040-9383(72)90031-6