DOI QR코드

DOI QR Code

The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers

  • Bai, Byong-Chol (Department of Green Energy Technology, Chungnam National University) ;
  • Kim, Jong-Gu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Naik, Mehraj-Ud-Din (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji-Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Green Energy Technology, Chungnam National University)
  • Received : 2011.08.09
  • Accepted : 2011.09.07
  • Published : 2011.09.30

Abstract

Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.

Keywords

References

  1. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377 (1997). http://dx.doi.org/10.1038/386377a0.
  2. Chen P, Wu X, Lin J, Tan KL. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 285, 91 (1999). http://dx.doi.org/10.1126/science.285.5424.91.
  3. Orimo S, Majer G, Fukunaga T, Zutel A, Schlapbach L, Fujii H. Hydrogen in the mechanically prepared nanostructured graphite. Appl Phys Lett, 75, 3093 (1999). http://dx.doi.org/10.1063/1.125241
  4. Grochala W, Edwards PP. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev, 104, 1283 (2004). http://dx.doi.org/10.1021/cr030691s.
  5. Naik MUD, Rather SU, Zacharia R, So CS, Hwang SW, Kim AR, Nahm KS. Comparative study of dehydrogenation of sodium aluminum hydride wet-doped with ScCl3, TiCl3, VCl3, and MnCl2. J Alloys Compd, 471, L16 (2009). http://dx.doi.org/10.1016/j.jallcom.2008.03.093.
  6. Chen P, Xiong Z, Luo J, Lin J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature, 420, 302 (2002). http://dx.doi.org/10.1038/nature01210.
  7. Naik MUD, Rather SU, So CS, Hwang SW, Kim AR, Nahm KS. Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. Int J Hydrogen Energy, 34, 8937 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.07.003.
  8. D.K R. Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum, 80, 1084 (2006). http://dx.doi.org/10.1016/j.vacuum.2006.03.030.
  9. Rodriguez NM. A review of catalytically grown carbon nanofibers. J Mater Res, 8, 3233 (1993). http://dx.doi.org/doi:10.1557/JMR.1993.3233.
  10. Merkulov VI, Melechko AV, Guillorn MA, Simpson ML, Lowndes DH, Whealton JH, Raridon RJ. Controlled alignment of carbon nanofibers in a large-scale synthesis process. Appl Phys Lett, 80, 4816 (2002). http://dx.doi.org/10.1063/1.1487920.
  11. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostatics, 35, 151 (1995). http://dx.doi.org/10.1016/0304-3886(95)00041-8.
  12. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Eng Chem, 15, 410 (2009). http://dx.doi.org/10.1016/j.jiec.2008.11.001.
  13. Rzepka M, Bauer E, Reichenauer G, Schliermann T, Bernhardt B, Bohmhammel K, Henneberg E, Knoll U, Maneck HE, Braue W. Hydrogen storage capacity of catalytically grown carbon nanofibers. J Phys Chem B, 109, 14979 (2005). http://dx.doi.org/10.1021/jp051371a.
  14. Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027.
  15. Park C, Engel ES, Crowe A, Gilbert TR, Rodriguez NM. Use of carbon nanofibers in the removal of organic solvents from water. Langmuir, 16, 8050 (2000). http://dx.doi.org/10.1021/la9916068.
  16. Kim BJ, Lee YS, Park SJ. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. J Colloid Interface Sci, 318, 530 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.018.
  17. Oh GY, Ju YW, Kim MY, Jung HR, Kim HJ, Lee WJ. Adsorption of toluene on carbon nanofibers prepared by electrospinning. Sci Total Environ, 393, 341 (2008). http://dx.doi.org/10.1016/j.scitotenv.2008.01.005.
  18. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.024.
  19. Chuvilin A, Khlobystov AN, Obergfell D, Haluska M, Yang S, Roth S, Kaiser U. Observations of chemical reactions at the atomic scale: dynamics of metal-mediated fullerene coalescence and nanotube rupture. Angew Chem Int Ed, 49, 193 (2010). http://dx.doi.org/10.1002/anie.200902243.
  20. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon, 45, 785 (2007). http://dx.doi.org/10.1016/j.carbon.2006.11.019.
  21. Ryoo MW, Seo G. Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Res, 37, 1527 (2003). http://dx.doi.org/10.1016/S0043-1354(02)00531-6.
  22. Kumar PM, Badrinarayanan S, Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358, 122 (2000). http://dx.doi.org/10.1016/S0040-6090(99)00722-1.
  23. Jimenez V, Diaz JA, Sanchez P, Valverde JL, Romero A. Influence of the activation conditions on the porosity development of herringbone carbon nanofibers. Chem Eng J, 155, 931 (2009). http://dx.doi.org/10.1016/j.cej.2009.09.035.
  24. Im JS, Park SJ, Kim T, Lee YS. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers. Int J Hydrogen Energy, 34, 3382 (2009). http://dx.doi.org/10.1016/j.ijhydene.2009.02.047.
  25. Rather SU, Zacharia R, Hwang SW, Naik MU, Nahm KS. Hyperstoichiometric hydrogen storage in monodispersed palladium nanoparticles. Chem Phys Lett, 438, 78 (2007). http://dx.doi.org/10.1016/j.cplett.2007.02.069.
  26. Im JS, Park SJ, Lee YS. Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Mater Res Bull, 44, 1871 (2009). http://dx.doi.org/10.1016/j.materresbull.2009.05.010.
  27. Panella B, Hirscher M, Roth S. Hydrogen adsorption in different carbon nanostructures. Carbon, 43, 2209 (2005). http://dx.doi.org/10.1016/j.carbon.2005.03.037.
  28. Browning DJ, Gerrard ML, Lakeman JB, Mellor IM, Mortimer RJ, Turpin MC. Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism. Nano Lett, 2, 201 (2002). http://dx.doi.org/10.1021/nl015576g.
  29. Lueking AD, Pan L, Narayanan DL, Clifford CEB. Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage. J Phys Chem B, 109, 12710 (2005). http://dx.doi.org/10.1021/jp0512199.

Cited by

  1. A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst vol.48, pp.23, 2013, https://doi.org/10.1007/s10853-013-7645-6
  2. Preparation and Characterization of Coaltar Pitch-based Activated Carbon Fibers(I) -Effect of Steam Activation Temperature on Textural Properties of Activated Carbon Fibers- vol.51, pp.4, 2014, https://doi.org/10.12772/TSE.2014.51.174
  3. PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4235-5