DOI QR코드

DOI QR Code

Improved Sensitivity of a Glucose Sensor by Encapsulation of Free GOx in Conducting Polymer Micropillar Structure

  • Jung, Shin-Hwan (Department of Chemistry and BK21 School of Chemical Materials Science) ;
  • Lee, Young-Kwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Son, Yong-Keun (Department of Chemistry and BK21 School of Chemical Materials Science)
  • Received : 2011.06.13
  • Accepted : 2011.06.27
  • Published : 2011.06.30

Abstract

A simple process of fabricating micropillar structure and its influence upon enhancing electrochemical biosensor response were studied in this work. Conducting polymer PEDOT was used as a base material in formulating a composite with PVA. Micro porous PC membrane filter was used as a template for the micropillar of the composite on ITO electrode. This structure could provide plenty of encapsulating space for enzyme species. After dosing enzyme solution into this space, Nafion film tent was cast over the pillar structure to complete the micropillar cavity structure. In this way, the encapsulation of enzyme could be accomplished without any chemical modification. The amount of enzyme species was easily controllable by varying the concentration of the dosing solution. The more amount of enzyme is stored in the sensor, the higher the electrochemical response is produced. One more reason for the sensitivity improvement comes from the large surface area of the micropillar structure. Application of 0.7 V produced the best current response under the condition of pH 7.4. This biosensor showed linear response to the glucose in 0.1~1 mM range with the average sensitivity of $14.06{\mu}A/mMcm^2$. Detection limit was 0.01 mM based on S/N = 3.

Keywords

References

  1. M. H. Asif, S. M. Usman Ali, O. Nur, M. Willander, C. Brnnmark, P. Strlfors, U. H. Englund, F. Elinder and B. Danielsson, Biosens. bioelectron, 25, 2205 (2010). https://doi.org/10.1016/j.bios.2010.02.025
  2. N. A. Rakow and K. S. Suslick, Nature, 406, 710 (2000). https://doi.org/10.1038/35021028
  3. R. W. Keay and C. J. McNeil, Biosens. Bioelectron. 13, 963 (1998). https://doi.org/10.1016/S0956-5663(98)00008-6
  4. L. C. Clark and C. Lyons, Annals of the New York Academy of Sciences, 102, 29 (1962).
  5. K. Narasimham and L.B. Wingard, Anal. Chem, 58, 2984 (1986). https://doi.org/10.1021/ac00127a019
  6. Y. Degani and A. Heller, J. Am. Chem. Soc, 110, 2615 (1988). https://doi.org/10.1021/ja00216a040
  7. G. Firtier, M. Vaillancourt and D. Belanger, Electroanalysis, 4, 275 (1992). https://doi.org/10.1002/elan.1140040304
  8. F. Mizutani, S. Yabuki and T. Katsura, Anal. Chim. Acta, 274, 201 (1993). https://doi.org/10.1016/0003-2670(93)80466-X
  9. G. F. Khan, E. Kobatake, Y. Ikariyama and M. Aizawa, Anal. Chim. Acta, 281, 527 (1993). https://doi.org/10.1016/0003-2670(93)85011-8
  10. M. Shaolin, J. Electroanal. Chem, 370, 135 (1994). https://doi.org/10.1016/0022-0728(93)03166-M
  11. Z. Zhang, W. Bao and C. Liu, Talanta, 41, 875 (1994). https://doi.org/10.1016/0039-9140(94)E0050-2
  12. J. Q. Kan, F. Zhou, S. L. Mu AND Y. J. Shi, Sens. Actuators B, 30, 7 (1996). https://doi.org/10.1016/0925-4005(95)01733-C
  13. M. Castillo-Ortega, D. Rodriguez, J. Encinas, M. Plascencia, F. A. Mendez-Velarde and R. Olayo, Sensors and Actuators B, 85, 19 (2002). https://doi.org/10.1016/S0925-4005(02)00045-X
  14. Z. J. Liu, B. H. Liu, J. L. Kong and J. Q. Deng, Anal. Chem., 72, 4707 (2000). https://doi.org/10.1021/ac990490h
  15. B. Q. Wang, B. Li, Z. X. Wang, G. B. Xu, Q. Wang and S. J. Dong, Anal. Chem., 71, 1935 (1999). https://doi.org/10.1021/ac980940q
  16. M. Mascini, M. Iannello and G. Palleschi, Anal. Chim. Acta, 146, 135 (1983). https://doi.org/10.1016/S0003-2670(00)80600-5
  17. L. T. Jin, J. S. Ye, W. Tong and Y. Z. Fang, Mikrochim. Acta, 112, 71 (1993). https://doi.org/10.1007/BF01243323
  18. J. Park, H. Kim and Y. Son, Sens. Actuators B, 133, 244 (2008). https://doi.org/10.1016/j.snb.2008.02.029
  19. M. Lee, Y. Son, J. Park and Y. Lee, Mole. Cryst. Liq. Cryst., 492, 155/[519] (2008).
  20. Y. -Q and K. -K. Shiu, Electroanalysis, 16, 1806 (2004). https://doi.org/10.1002/elan.200303037
  21. M. H. Xue, Q. Xu, M. Zhou and J. J. Zhu, Electrochem, Commun., 8, 1468 (2006). https://doi.org/10.1016/j.elecom.2006.07.019
  22. T. Chung, S. Park and H. Kim, Phys. & High Tech. 24, Oct (2004).
  23. C. Chen, K. Ishihara, N. Nakabayashi, E. Tamiya and I. Karube, J. Biomed. Microdevices 1:2, 155 (1999).
  24. S. Zhang, N. Wang, H. Yu, Y. Niu and C. Sun, Bioelectrochemistry, 67, 15 (2005). https://doi.org/10.1016/j.bioelechem.2004.12.002
  25. W. Yang, J. Wang, S. Zhao, Y. Sun and C. Sun, Electrochem, Commun., 8, 665 (2006). https://doi.org/10.1016/j.elecom.2005.11.014
  26. Y. Sun, Y. Bai, W. Yang and C. Sun, Electrochim. Acta, 52, 7352 (2007). https://doi.org/10.1016/j.electacta.2007.06.007

Cited by

  1. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase vol.4, 2015, https://doi.org/10.1016/j.sbsr.2015.04.006
  2. Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing vol.100, 2018, https://doi.org/10.1016/j.bios.2017.09.021
  3. Activity determination of FAD-dependent glucose dehydrogenase immobilized in PEDOT: PSS-PVA composite films for biosensor applications vol.16, pp.6, 2016, https://doi.org/10.1002/elsc.201600128
  4. Electrooxidation of Zolpidem and its Voltammetric Quantification in Standard and Pharmaceutical Formulation using Pencil Graphite Electrode vol.7, pp.1, 2016, https://doi.org/10.5229/JECST.2016.7.1.68