DOI QR코드

DOI QR Code

Effect of the TiO2 Nanotubes in the Photoelectrode on Efficiency of Dye-sensitized Solar Cell

  • Received : 2011.05.20
  • Accepted : 2011.06.05
  • Published : 2011.06.30

Abstract

The effect of $TiO_2$ nanotube (TNT) and nanoparticle (TNP) composite photoelectrode and the role of TNT to enhance the photo conversion efficiency in dye-sensitized solar cell (DSSC) have investigated in this study. Results demonstrated that the increase of the TNT content (1-15 %) into the electron collecting TNP film increases the open-circuit potential ($V_{oc}$) and short circuit current density ($J_{sc}$). Based on the impedance analysis, the increased $V_{oc}$ was attributed to the suppressed recombination between electrode and electrolyte or dye. Photochemical analysis revealed that the increased Jsc with the increased TNT content was due to the scattering effect and the reduced electron diffusion path of TNT. The highest $J_{sc}$ (12.6 mA/$cm^2$), Voc (711 mV) and conversion efficiency (5.9%) were obtained in the composite photoelectrode with 15% TNT. However, $J_{sc}$ and $V_{oc}$ was decreased for the case of 20% TNT, which results from the significant reduction of adsorbed dye amount and the poor attachment of the film on the fluorine-doped tin oxide (FTO). Therefore, application of this composite photoelectrode is expected to be a promising approach to improve the energy conversion efficiency of DSSC.

Keywords

References

  1. J.-J. Lee, M. M. Rahman, S. Sarker, N. C. Deb Nath, A.J.S. Ahammad, and J. K. Lee, in Composite materials for medicine and nanotechnology edited B. Attaf, Intech, Croatia, 181 (2011).
  2. Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coord. Chem. Rev, 248, 1381 (2004). https://doi.org/10.1016/j.ccr.2004.03.006
  3. D. Gong, C. A. Grimes, O. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, J. Mater. Res. 16, 12, 3331 (2001). https://doi.org/10.1557/JMR.2001.0457
  4. T. Peng, A. Hasegawa, J. Qui, and K. Hirao, Chem. Mater., 15, 2011 (2003). https://doi.org/10.1021/cm020828f
  5. J. M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, Small, 3, 300 (2007). https://doi.org/10.1002/smll.200600426
  6. Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, Nano Lett., 2, 717 (2002). https://doi.org/10.1021/nl025541w
  7. X. Peng, and A. Chen, J. Mater. Chem., 14, 2542 (2004). https://doi.org/10.1039/b404750h
  8. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006). https://doi.org/10.1021/nl052099j
  9. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, Nano Lett., 7, 69 (2007). https://doi.org/10.1021/nl062000o
  10. O. K. Varghese, M. Paulose, K. Shankar, G. K. Mor, and C. A. Grimes, J. Nanosci. Nanotechnol., 5, 1158 (2005). https://doi.org/10.1166/jnn.2005.195
  11. W. E. Vargas, J. Appl. Phys. 88, 4079 (2000). https://doi.org/10.1063/1.1289230
  12. H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N. G. Park, Inorg. Chim. acta 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  13. D.-W. Seo, S. Sarker, N. C. Deb Nath, S.-W. Choi, A. J. S. Ahammad, J.-J. Lee, and W.-G. Kim, Electrochim. Acta, 55, 1483(2010). https://doi.org/10.1016/j.electacta.2009.05.007
  14. G. Cerrato, L. Marchese, and C. Morterr, Appl. Surf. Sci., 70-71, 200(1993). https://doi.org/10.1016/0169-4332(93)90427-D
  15. A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M.-C. Bernard, N. Spyrellis, and P. Falaras, J. Mater. Process. Tech., 196, 243(2008). https://doi.org/10.1016/j.jmatprotec.2007.05.051
  16. B. Bruggemann, J. A. Organero, T. Pascher, T. Pullerits, and A. Yartsev, Phys. Rev. Lett., 97, 208301 (2006). https://doi.org/10.1103/PhysRevLett.97.208301
  17. B. Wenger, M. Grtzel, and J.-E. Moser, J. Am. Chem. Soc., 127, 12150 (2005). https://doi.org/10.1021/ja042141x
  18. A. Hagfeldt, G. Boschloo, L. Kloo, and H. Pettersson, Chem. Rev., 110, 6595 (2010). https://doi.org/10.1021/cr900356p
  19. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, J. Phys. Chem. B., 110, 13872 (2006). https://doi.org/10.1021/jp061693u
  20. K. Zhu, E. A. Schiff, N.-G. Prak, J. van de Lagemaat, and A. J. Frank, Appl. Phys. Lett., 80, 4, 687 (2002).

Cited by

  1. Optimization of hierarchical light-scattering layers in TiO 2 photoelectrodes of dye-sensitized solar cells vol.134, 2016, https://doi.org/10.1016/j.solener.2016.05.008
  2. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells vol.14, pp.13, 2012, https://doi.org/10.1039/c2cp00035k
  3. A Series of N-Alkylimidazolium Propylhexanamide Iodide for Dye-Sensitized Solar Cells vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1480
  4. Development of Well-Aligned TiO2Nanotube Arrays to Improve Electron Transport in Dye-Sensitized Solar Cells vol.2012, 2012, https://doi.org/10.1155/2012/215802
  5. A Facile Synthesis of Granular ZnO Nanostructures for Dye-Sensitized Solar Cells vol.2013, 2013, https://doi.org/10.1155/2013/563170
  6. Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs) vol.109, 2013, https://doi.org/10.1016/j.electacta.2013.07.057
  7. Effect of Titanium Nanorods in the Photoelectrode on the Efficiency of Dye Sensitized Solar Cells vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2765
  8. Fabrication and characterization of TiO2 nanotube by hydrothermal method in the design of DSSC vol.49, pp.2, 2013, https://doi.org/10.3103/S0003701X13020072
  9. Deprotonation of N3 adsorbed on TiO2 for high-performance dye-sensitized solar cells (DSSCs) vol.1, pp.43, 2013, https://doi.org/10.1039/c3ta12298k