참고문헌
-
Lee S, Lee CH. Effect of operating conditions on
$CaSO_4$ scale formation mechanism in nanofiltration for water softening. Water Res. 2000;34:3854-3866. https://doi.org/10.1016/S0043-1354(00)00142-1 - Tay JH, Liu J, Delai Sun D. Effect of solution physico-chemistry on the charge property of nanofiltration membranes. Water Res. 2002;36:585-598. https://doi.org/10.1016/S0043-1354(01)00278-0
- Kilduff JE, Mattaraj S, Belfort G. Flux decline during nanofiltration of naturally-occurring dissolved organic matter: effects of osmotic pressure, membrane permeability, and cake formation. J. Membr. Sci. 2004;239:39-53. https://doi.org/10.1016/j.memsci.2003.12.030
- Koyuncu I, Topacik D, Wiesner MR. Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Water Res. 2004;38:432-440. https://doi.org/10.1016/j.watres.2003.10.001
- Bodzek M, Koter S, Wesolowska K. Application of membrane techniques in a water softening process. Desalination 2002;145:321-327. https://doi.org/10.1016/S0011-9164(02)00430-7
-
Lin CJ, Shirazi S, Rao P, Agarwal S. Effects of operational parameters on cake formation of
$CaSO_4$ in nanofiltration. Water Res. 2006;40:806-816. https://doi.org/10.1016/j.watres.2005.12.013 - Nanda D, Tung KL, Hsiung CC, et al. Effect of solution chemistry on water softening using charged nanofiltration membranes. Desalination 2008;234:344-353. https://doi.org/10.1016/j.desal.2007.09.103
- Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu Arabi M. A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 2004;170:281-308. https://doi.org/10.1016/j.desal.2004.01.007
- Wittmann E, Thorsen T. Water treatment. In: Schaefer AI, Fane AG, Waite TD, eds. Nanofiltration: principles and applications. Oxford: Elsevier Advanced Technology; 2007. Ch. 10. p. 273-284.
- Vickers JC, Thompson MA, Kelkar UG. The use of membrane filtration in conjunction with coagulation processes for improved NOM removal. Desalination 1995;102:57-61. https://doi.org/10.1016/0011-9164(95)00041-Y
- Carroll T, King S, Gray SR, Bolto BA, Booker NA. The fouling of microfiltration membranes by NOM after coagulation treatment. Water Res. 2000;34:2861-2868. https://doi.org/10.1016/S0043-1354(00)00051-8
- Berube PR, Mavinic DS, Hall ER, Kenway SE, Roett K. Evaluation of adsorption and coagulation as membrane pretreatment steps for the removal of organic material and disinfection-by-product precursors. J. Environ. Eng. Sci. 2002;1:465-476. https://doi.org/10.1139/s02-035
- Pikkarainen AT, Judd SJ, Jokela J, Gillberg L. Pre-coagulation for microfiltration of an upland surface water. Water Res. 2004;38:455-465. https://doi.org/10.1016/j.watres.2003.09.030
- Kim HC, Hong JH, Lee S. Fouling of microfiltration membranes by natural organic matter after coagulation treatment: a comparison of different initial mixing conditions. J. Membr. Sci. 2006;283:266-272. https://doi.org/10.1016/j.memsci.2006.06.041
- Waite TD. Chemical speciation effect in nanofiltration separation. In: Schaefer AI, Fane AG, Waite TD, eds. Nanofiltration: principles and applications. Oxford: Elsevier Advanced Technology; 2007. Ch. 7. p. 166-167.
- Park PK, Lee CH, Choi SJ, Choo KH, Kim SH, Yoon CH. Effect of the removal of DOMs on the performance of a coagulation-UF membrane system for drinking water production. Desalination 2002;145:237-245. https://doi.org/10.1016/S0011-9164(02)00418-6
- Oh JI, Lee S. Influence of streaming potential on flux decline of microfiltration with in-line rapid pre-coagulation process for drinking water production. J. Membr. Sci. 2005;254:39-47. https://doi.org/10.1016/j.memsci.2004.12.030
- Cho MH, Lee CH, Lee S. Effect of flocculation conditions on membrane permeability in coagulation-microfiltration. Desalination 2006;191:386-396. https://doi.org/10.1016/j.desal.2005.08.017
- Jefferson B, Jarvis P, Sharp E, Wilson S, Parsons SA. Flocs through the looking glass. Water Sci. Technol. 2004;50:47-54.
- Lee JD, Lee SH, Jo MH, Park PK, Lee CH, Kwak JW. Effect of coagulation conditions on membrane filtration characteristics in coagulation--microfiltration process for water treatment. Environ. Sci. Technol. 2000;34:3780-3788. https://doi.org/10.1021/es9907461
- Listiarini K, Sun DD, Leckie JO. Organic fouling of nanofiltration membranes: evaluating the effects of humic acid, calcium, alum coagulant and their combinations on the specific cake resistance. J. Membr. Sci. 2009;332:56-62. https://doi.org/10.1016/j.memsci.2009.01.037
- Kim HA, Choi JH, Takizawa S. Comparison of initial filtration resistance by pretreatment processes in the nanofiltration for drinking water treatment. Sep. Purif. Technol. 2007;56:354-362. https://doi.org/10.1016/j.seppur.2007.02.016
- Park N, Lee S, Yoon SR, Kim YH, Cho J. Foulants analyses for NF membranes with different feed waters: coagulation/sedimentation and sand filtration treated waters. Desalination 2007;202:231-238. https://doi.org/10.1016/j.desal.2005.12.060
- Ohno K, Matsui Y, Itoh M, et al. NF membrane fouling by aluminum and iron coagulant residuals after coagulation-MF pretreatment. Desalination 2010;254:17-22. https://doi.org/10.1016/j.desal.2009.12.020
- Pernitsky DJ, Edzwald JK. Solubility of polyaluminium coagulants. J. Water Supply Res. Technol. Aqua 2003;52:395-406.
- Schaep J, Vandecasteele C. Evaluating the charge of nanofiltration membranes. J. Membr. Sci. 2001;188:129-136. https://doi.org/10.1016/S0376-7388(01)00368-4
- Her N, Amy G, Jarusutthirak C. Seasonal variations of nanofiltration (NF) foulants: identification and control. Desalination 2000;132:143-160. https://doi.org/10.1016/S0011-9164(00)00143-0
- Tanninen J, Manttari M, Nystrom M. Effect of salt mixture concentration on fractionation with NF membranes. J. Membr. Sci. 2006;283:57-64. https://doi.org/10.1016/j.memsci.2006.06.012
- Bargeman G, Vollenbroek JM, Straatsma J, Schroen CGPH, Boom RM. Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. J. Membr. Sci. 2005;247:11-20. https://doi.org/10.1016/j.memsci.2004.05.022
- Balannec B, Vourch M, Rabiller-Baudry M, Chaufer B. Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Sep. Purif. Technol. 2005;42:195-200. https://doi.org/10.1016/j.seppur.2004.07.013
- Field RW, Wu D, Howell JA, Gupta BB. Critical flux concept for microfiltration fouling. J. Membr. Sci. 1995;100:259-272. https://doi.org/10.1016/0376-7388(94)00265-Z
- Jarusutthirak C, Mattaraj S, Jiraratananon R. Influence of inorganic scalants and natural organic matter on nanofiltration membrane fouling. J. Membr. Sci. 2007;287:138-145. https://doi.org/10.1016/j.memsci.2006.10.034
- Zelazny LW, Jardine PM. Surface reactions of aqueous aluminum species. In: Sposito G, ed. The environmental chemistry of aluminum. Boca Raton, FL: CRC Press; 1989. p. 149-155.
- Manttari M, Pihlajamaki A, Nystrom M. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J. Membr. Sci. 2006;280:311-320. https://doi.org/10.1016/j.memsci.2006.01.034
- Bouranene S, Fievet P, Szymczyk A, El-Hadi Samar M, Vidonne A. Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. J. Membr. Sci. 2008;325:150-157. https://doi.org/10.1016/j.memsci.2008.07.018
- Gabelich CJ, Ishida KP, Gerringer FW, Evangelista R, Kalyan M, Suffet IHM. Control of residual aluminum from conventional treatment to improve reverse osmosis performance. Desalination 2006;190:147-160. https://doi.org/10.1016/j.desal.2005.09.002
- Schrader GA, Zwijnenburg A, Wessling M. The effect of WWTP effluent zeta-potential on direct nanofiltration performance. J. Membr. Sci. 2005;266:80-93. https://doi.org/10.1016/j.memsci.2005.05.013
- Choi YH, Kim HS, Kweon JH. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes. Sep. Purif. Technol. 2008;62:529-534. https://doi.org/10.1016/j.seppur.2008.03.001
- Li Q, Elimelech M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ. Sci. Technol. 2004;38:4683-4693. https://doi.org/10.1021/es0354162
- Li Q, Elimelech M. Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter. J. Membr. Sci. 2006;278:72-82. https://doi.org/10.1016/j.memsci.2005.10.045
- Bertsh PM. Aqueous polynuclear aluminum species. In: Sposito G, ed. The environmental chemistry of aluminum. Boca Raton, FL: CRC Press; 1989. p. 107-109.
피인용 문헌
- 이온 몰 전도도가 나노여과막에 의한 폐수 중의 중금속 분리특성에 미치는 영향 vol.4, pp.1, 2011, https://doi.org/10.5804/lhij.2013.4.1.119