DOI QR코드

DOI QR Code

Effects of Ishige okamurae Extract Supplement on Blood Glucose and Antioxidant Systems in Type 2 Diabetic Patients

패 추출물이 제2형 당뇨병 환자의 혈당 및 항산화 체계에 미치는 영향

  • Kang, Yeon-Ju (Dept. of Food Science and Nurition, Pusan National University) ;
  • Kim, Hak-Ju (Soejin Biotech Co. Ltd.) ;
  • Han, Ji-Sook (Dept. of Food Science and Nurition, Pusan National University)
  • Received : 2011.07.18
  • Accepted : 2011.11.09
  • Published : 2011.12.31

Abstract

We performed a randomized placebo-controlled trial to determine whether or not Ishige okamurae extract supplements modulate blood glucose and antioxidant systems in type 2 diabetic patients. A total of 46 patients were randomized to either an Ishige okamurae extract group or a placebo group. The patients consumed either 1,600 mg of Ishige okamurae extract or cornstarch supplement per day for 10 weeks. The lifestyle factors and dietary intake of patients were not altered during the 10 week trial period. After 10 weeks, the fasting blood glucose level was slightly decreased in the Ishige okamurae extract group, but a significant decrease was not observed. Also, glycosylated hemoglobin was significantly (p<0.01) decreased. Especially, low-glycosylated hemoglobin ($7.12{\pm}0.38%$ to $6.56{\pm}0.53%$) was significantly decreased compared to high-glycosylated hemoglobin ($8.65{\pm}0.92%$ to $8.60{\pm}0.85%$) in that group. The superoxide dismutase, catalase, and glutathione peroxidase levels were increased in the Ishige okamurae extract group compared to the placebo group. The increase of these enzymes was associated with the decrease of MDA concentration in the Ishige okamurae extract group, but a significant decrease was not observed. The Ishige okamurae extract supplement showed no adverse effects on liver and kidney functions. Findings from this study suggest that an Ishige okamurae extract supplement can help blood glucose status in type 2 diabetic patients without adverse effects.

본 연구는 패추출물 섭취를 통해 제 2형 당뇨병 환자의 혈당, 혈중지질 및 항산화 체계 개선에 있어서 패추출물의 효능을 규명하고자 하였다. 동결건조 한 패추출물을 200 mg 캡슐로 만들어 제 2형 당뇨환자에게 아침과 저녁 식전에 4캡슐씩 하루 8캡슐(1600 mg)을 10주간 섭취하도록 하였다. 위약군은 동량의 corn starch를 실험군과 동일하게 제조한 후 같은 방법으로 섭취하게 하였고, 이중맹검법을 사용하였다. 실험대상자는 총 46명이며 실험군 24명, 위약군 22명으로 구성되었으며, 두 군의 일반적 특성 및 생활습관은 유의적 차이가 없었다. 패추출물 섭취군에서 공복혈당은 10주간 섭취 후 $136.50{\pm}31.96$ mg/dL에서 $130.90{\pm}29.88$ mg/dL로 감소하였으나 유의적인 차이를 보이지 않았다. 당화혈색소는 $7.34{\pm}0.78%$에서 $6.82{\pm}0.98%$로 유의적(p<0.01)으로 감소하였다. 특히 당화혈색소가 8% 미만인 저당화혈색소 군에서 유의적으로(p<0.05) 감소하는 것으로 나타났다. 인슐린저 항성은 패추출물군의 경우 $2.77{\pm}0.49$ mmol/L에서 $2.19{\pm}0.62$ mmol/L로 감소하였으나 유의성이 없었으며 위약군도 유의한 변화가 없었다. 패추출물의 섭취가 10주간 이루어지면서 혈청지질의 변화는 유의하지 않았으나 HDL-콜레스테롤 경우 위약군에서 감소한 반면 패추출물군에서는 $41.14{\pm}7.86$ mg/dL에서 $46.82{\pm}5.69$ mg/dL로 증가하였다. LDL-콜레스테롤은 $115.43{\pm}27.47$ mg/dL에서 $108.73{\pm}22.36$ mg/dL로 감소하였으나 유의한 변화는 없었다. 지질과산화물 농도는 패추출물 섭취군에서 $6.83{\pm}1.05$ nmol/MDA에서 $5.72{\pm}1.28$ nmol/MDA로 그 함량이 감소되었고, superoxide dismutase, glutathione peroxidase, catalase와 같은 항산화 효소계의 활성은 위약군에 비하여 패추출물 섭취군에서 증가하였으나 유의적인 차이를 보이지 않았다. 간기능 지표인 AST, ALT, ${\gamma}$-GTP와 신장 기능 지표인 BUN, creatinine에서 유의적인 차이 없이 정상범위를 나타내었다. 이상의 연구 결과 한국인 제2형 당뇨병 환자에서 패추출물의 섭취는 지난 2~3개월간의 평균 혈당관리 상태를 파악할 수 있는 지표인 당화혈색소 감소에 효과적인 것으로 나타났으며, 패추출물 복용 후에도 간 및 신장기능이 정상으로 확인되었으므로 패추출물은 당뇨병 환자들의 평균 혈당관리에 도움을 줄 수 있을 것으로 사료된다.

Keywords

References

  1. The Diabetic Association of Korean. 2007. Characteristics of Korean diabetic patients. The Diabetes Magazine 7: 8-9.
  2. Coulston AM, Hollenbeck CB. 1988. Source and amount of dietary carbohydrate in patients with noninsulin-dependent diabetes mellitus. Top Clin Nutr 3: 17-24.
  3. Yang HS, Park JI, Jhee EC. 1983. Studies on the glycosylation of the hemoglobin of diabetes mellitus. The Chonbuk University Medical Journal 7: 125-130.
  4. Goldberg RB. 1981. Lipid disorders in diabetes. Diabetes Care 4: 561-572. https://doi.org/10.2337/diacare.4.5.561
  5. Reven KM. 1987. Abnormal lipoprotein metabolism in noninsulin- dependent diabetes mellitus. Am J Med 83: 31-40.
  6. Noh HL, Chung YS, Lee KW, Kim HM, Cho JS. 1998. The oxidative stress and the antioxidant system in type 2 diabetics with complications. J Korean Diabetes Assoc 22: 253-261.
  7. Kim MS. 2004. Effect of seaweed and vegetable supplements on blood glucose and lipid level and antioxidant enzymes activities in type II diabetic patients. MS Thesis. Hanyang University, Seoul, Korea. p 2-5.
  8. Ebihara K, Kiriyama S. 1990. Physiochemical property and physiological function of dietary fiber. Nippon Shokuhin Kogyo Gakkaishi 37: 916-925. https://doi.org/10.3136/nskkk1962.37.11_916
  9. Kim HS, Kim GJ, 1998. Effects of the feeding Hijikia fusiforme (Harvey) Okamura on lipid composition of serum in dietary hyperlipidemic rats. J Korean Soc Food Sci Nutr 27: 718-723.
  10. Kwak CS, Kim SA, Lee MS. 2005. The correlation of antioxidative effects of 5 Korean common edible seaweed and total polyphenol content. J Korean Soc Food Sci Nutr 34: 1143-1150. https://doi.org/10.3746/jkfn.2005.34.8.1143
  11. Oh KL. 1997. Screening for the antioxidants from marine algae and separation of effective compounds from Hizikia fusiforme. MS Thesis. Jeju National University, Jeju, Korea.
  12. Jung BM, Ahn CB, Kang SJ, Park JH, Chung DH. 2001. Effect of Hijikia fusiforme extracts on lipid metabolism and liver antioxidative enzyme activities in triton-induced hperlipidemic rats. J Korean Soc Food Sci Nutr 30: 1184-1189.
  13. Cho YJ, Bang MA. 2004. Effect of dietary seaweeds on blood glucose, lipid and glutathione enzyme in streptozotocin- induced diabetic rats. J Korean Soc Food Sci Nutr 33: 987-994. https://doi.org/10.3746/jkfn.2004.33.6.987
  14. Lim SN, Cheung PCK, Ooi VEC, Ang PO. 2002. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50: 3862-3866. https://doi.org/10.1021/jf020096b
  15. Athukorala Y, Lee KW, Kim SK, Jeon YJ. 2007. Anticoagulant activity of marine green and brown algae collected from Jeju island in Korea. Bioresour Technol 98: 1711-1716. https://doi.org/10.1016/j.biortech.2006.07.034
  16. Ahn MJ, Yoon KD, Kim CY, Kim JH, Shin CG, Kim J. 2006. Inhibitory activity on reverse transcriptase and integrase of a carmalol derivative from a brown alga, Ishige okamurae. Phytother Res 20: 711-713. https://doi.org/10.1002/ptr.1939
  17. Min KH. 2010. Hypoglycemic and hypolidemic effects of Ishige okamurae extract in type 2 diabetic mice. MS Thesis. Pusan National University, Busan, Korea.
  18. Schneider Y, Vincent F, Duranton B, Badolo L, Gosse F, Bergmann C, Seiler N, Raul F. 2000. Anti-proliferative effect of resveratrol a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett 158: 85-91. https://doi.org/10.1016/S0304-3835(00)00511-5
  19. Seoul Medical Science Institute. 2005. SCL examination guidebook.
  20. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  21. Mattews DR, Hosker JP, Rudenski AS, Nayor BA, Treacher DF, Tuner RC. 1985. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plama glucose and insulin concentrations in man. Diabetologia 28: 412-419. https://doi.org/10.1007/BF00280883
  22. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  23. Abei H. 1974. Catalase. In Method of Enzymatic Analysis. Academic Press, New York, NY, USA. p 673-684.
  24. Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169.
  25. Ellman GL. 1959. Tissue sulfhydryl group. Arch Biochem Biophys 82: 70-72. https://doi.org/10.1016/0003-9861(59)90090-6
  26. Tarladgis BG, Person AM, Dugan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agric 15: 602-607. https://doi.org/10.1002/jsfa.2740150904
  27. Han MA, Ryu SY, Park J, Kang MG, Park JG, Kim KS. 2008. Health-related quality of life assessment by the euro- Qol-5D in some rural adults. Korean J Preventive Medicine 41: 173-180. https://doi.org/10.3961/jpmph.2008.41.3.173
  28. Hong IO. 2011. Health related quality of life by smoking, drinking, exercise, obesity and sociodemographic variables using EQ-5D. MS Thesis. Sahmyook University, Seoul, Korea.
  29. Mo SM, Lee YS, Goo JO, Son SM, Seo JS, Youn EY, Lee SK, Kim WK. 2002. Diet theraphy. 2nd ed. Kyomunsa, Seoul, Korea. p 327.
  30. Yu JM. 2004. Treatment guideline for diabetes. Introduce of 2004 treatment guideline from American Diabetics Association. Clinical Diabetes 5: 9-21.
  31. American Diabetics Association. 2008. Diagnosis and classification of diabetes mellitus. Diabetes Care 27: S5-S10.
  32. Cusin I, Terrettaz J, Roher-Jeanrenud F, Zarjevski N, Assimacopoulos- Jeannet F, Jeanrenaud B. 1990. Hyperinsulinemia increases the amount of GLUT4 mRNA in white adipose tissue and decreases that of muscles: A clue for increased fat depot and insulin resistance. Endocrinology 127: 3246-3248. https://doi.org/10.1210/endo-127-6-3246
  33. Takao F, Laury MC, Ktorza A, Picon L, Penicaud L. 1990. Hyperinsulinemia increases insulin action in vivo in white adipose tissue but not in muscles. Biochem J 272: 255-257. https://doi.org/10.1042/bj2720255
  34. Cha BS. 2003. Definition, cause and classification of insulin resistance. The Diabetes Magazine 9: 14-19.
  35. Kubisch HM, Wang J, Luche R, Calson E. 1994. Transgenic copper/zinc superoxide dismutase modulates susceptibility to type I diabetes. Proc Natl Acad Sci USA 91: 9956-9959. https://doi.org/10.1073/pnas.91.21.9956
  36. Rhee SY, Chon S, Oh S, Kim SW, Kim JW, Kim YS, Woo JT. 2007. Insulin secretion and insulin resistance in newly diagnosed, drug naive prediabetes and type 2 diabetes patient with/without metabolic syndrome. Diabetes Res Clin Pract 76: 397-403. https://doi.org/10.1016/j.diabres.2006.09.035
  37. Cerami A, Stevens VJ, Monnier UM. 1979. Role of nonenzymatic glycosylation in the development of sequelae of diabetes mellitus. Metab Clin Exp 28: 431-437. https://doi.org/10.1016/0026-0495(79)90051-9
  38. Oda A, Bannai C, Yamaoka T, Matsushima T. 1994. Inactivation of Cu, Zn-superoxide dismutase by in vitro glycosylation and in erythrocytes of diabetic patients. Horm Metab Res 2: 1-4.
  39. Hammers HD. 1991. Aminoguanidine treatment inhibits the development of complications in diabetes. Diabetes 40: 405-421. https://doi.org/10.2337/diabetes.40.4.405
  40. Celik S, Baydas G, Yilmaz O. 2002. Influence of vitamin E on the levels of fatty acids and MDA in some tissues of diabetic rats. Cell Biochem Funct 20: 67-71. https://doi.org/10.1002/cbf.936
  41. Ha AW, Kim HM. 1999. The study of lipid-peroxidation, antioxidant enzymes, and the antioxidant vitamins in NIDDM patients with microvascular-diabetic complications. Korean J Nutrition 32: 17-23.
  42. Kim YS. 2009. Practice guidelines for assessments and recommendations of laboratory and physical measurements in Korea national screening program. Department of family medicine, Asan medical center, University of Ulsan College of Medicine, Ulsan, Korea. p 104.

Cited by

  1. Effect of Black Garlic and Gaeddongssuk (Artemisia annua L.) Extracts on the Lipid Profile and Hepatic Antioxidant Enzyme Activities of Exercised Rats vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.869
  2. Antioxidant and anti-fatigue effects of abalone (Haliotis discus hannai) composites containing natural plant vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.598