DOI QR코드

DOI QR Code

SCALAR CURVATURES ON SU(3)/T(k, l)

  • Pyo, Yong-Soo (Department of Applied Mathematics, Pukyong National University) ;
  • Shin, Hyun-Ju (Department of Applied Mathematics, Pukyong National University) ;
  • Park, Joon-Sik (Department of Mathematics, Pusan University of Foreign Studies)
  • Received : 2011.09.27
  • Accepted : 2011.11.16
  • Published : 2011.12.25

Abstract

In this paper, we estimated the Ricci curvature and the scalar curvature on SU(3)/T (k, l) under the condition (k, l) ${\in}\mathbb{R}^2$ (${\mid}k{\mid}+{\mid}l{\mid}{\neq}0$), where the four isotropy irreducible representations in SU(3)/T (k, l) are, not necessarily, mutually equivalent or inequivalent.

Keywords

References

  1. S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting positively Riemannian metrics, Bull. Amer. Math. Soc. 81 (1975), 93-97. https://doi.org/10.1090/S0002-9904-1975-13649-4
  2. A. L. Besse, Einstein Manifolds, Springer Verlag (1987).
  3. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, 1963; Vol. 2, 1969, John Wiley and Sons, New York.
  4. M. Kreck and S. Stolz, Some nondiffeomorphic homogeneous 7-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), 465-486. https://doi.org/10.4310/jdg/1214446327
  5. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. https://doi.org/10.2307/2372398
  6. J.-S. Park, Stability of the identity map of SU(3)=T (k; l), Tokyo J. Math. 17(2) (1994), 281-289. https://doi.org/10.3836/tjm/1270127952
  7. J.-S. Park, Ricci curvatures on SU(3)=T (k; l), to appear.
  8. H. Urakawa, Numerical computation of the spectra of the Laplacian on 7- dimensional homogeneous manifolds SU(3)/$T_{k,l}$, SIAM J. Math. Anal. 15 (1984), 979-987. https://doi.org/10.1137/0515074
  9. H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homo- geneous Riemannian manifold, Compositio Math. 59 (1986), 57-71.
  10. N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.
  11. M. Y. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982), 23-28. https://doi.org/10.1215/S0012-7094-82-04902-X

Cited by

  1. VARIATIONS OF THE LENGTH INTEGRAL vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.141