References
- S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting positively Riemannian metrics, Bull. Amer. Math. Soc. 81 (1975), 93-97. https://doi.org/10.1090/S0002-9904-1975-13649-4
- A. L. Besse, Einstein Manifolds, Springer Verlag (1987).
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, 1963; Vol. 2, 1969, John Wiley and Sons, New York.
- M. Kreck and S. Stolz, Some nondiffeomorphic homogeneous 7-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), 465-486. https://doi.org/10.4310/jdg/1214446327
- K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65. https://doi.org/10.2307/2372398
- J.-S. Park, Stability of the identity map of SU(3)=T (k; l), Tokyo J. Math. 17(2) (1994), 281-289. https://doi.org/10.3836/tjm/1270127952
- J.-S. Park, Ricci curvatures on SU(3)=T (k; l), to appear.
-
H. Urakawa, Numerical computation of the spectra of the Laplacian on 7- dimensional homogeneous manifolds SU(3)/
$T_{k,l}$ , SIAM J. Math. Anal. 15 (1984), 979-987. https://doi.org/10.1137/0515074 - H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homo- geneous Riemannian manifold, Compositio Math. 59 (1986), 57-71.
- N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.
- M. Y. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982), 23-28. https://doi.org/10.1215/S0012-7094-82-04902-X
Cited by
- VARIATIONS OF THE LENGTH INTEGRAL vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.141