References
- Adbel-All, N. H., Abd-Ellah, H. N. and Moustafa, H. M. (2003). Information geometry and statistical manifold. Chaos, Solitons and Fractals, 15, 161-172. https://doi.org/10.1016/S0960-0779(02)00142-X
- Amari, S. (1982). Differential geometry of curved exponential families-curvatures and information loss. Ann. Statist. 10.
- Amari, S. (1985). Differential geometrical methods in statistics, Springer Lecture Notes in Statistics, 28.
- Arwini, K. A. and Dodson, C. T. J. (2007). Alpha-geometry of the Weibull manifold. Second Basic Sciences Conference, Al-Fatah University, Tripoli, Libya 4-8.
- Cho, B. S. and Baek, H. Y. (2006). Geometric properties of t-distribution. Honam Mathematical Journal. 28, 433-438.
- Efron, B. (1975). Defining the curvature of a statistical problem. Annual. Statis- tics. 3, 1109-1242. https://doi.org/10.1214/aos/1176343243
- Kass, R. E. and Vos, P. W. (1997). Geometrical foundations of asymptotic infer ence, John Wiley and Sons, Inc.
- Kass, R. E. (1989). The geometry of asymptotic inference, Statistical Science, 4, 188-219. https://doi.org/10.1214/ss/1177012480
- Murray, M. K. and Rice, J. W. (1993). Differential geometry and Statistics, Chapman and Hall, New York.
- Rao, C. R. (1945). Information and the accuracy attainable in estimation of statistical parameters, Bull. Calcutta Math. Soc, 37, 81-91.