References
- J. A. Baker, Distributional methods for functional equations, Aeq. Math. 62 (2001), 136-142. https://doi.org/10.1007/PL00000134
- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), 76-86. https://doi.org/10.1007/BF02192660
- J. Chung, A distributional version of functional equations and their stabilities, Nonlinear Analysis 62(2005), 1037-1051. https://doi.org/10.1016/j.na.2005.04.016
- J. Chung, Hyers-Ulam-Rassias stability of Cauchy equation in the space of Schwartz distributions, J. Math. Anal. Appl. 300(2004), 343-350. https://doi.org/10.1016/j.jmaa.2004.06.022
- J. Chung, Stability of functional equations in the space of distributions and hyperfunctions, J. Math. Anal. Appl. 286 (2003), 177-186. https://doi.org/10.1016/S0022-247X(03)00468-2
- J. Chung, S.-Y. Chung and D. Kim, The stability of Cauchy equations in the space of Schwartz distributions, J. Math. Anal. Appl. 295(2004), 107-114. https://doi.org/10.1016/j.jmaa.2004.03.009
- J. Chung, S.-Y. Chung and D. Kim, Une caracterisation de l'espace de Schwartz, C. R. Acad. Sci. Paris Ser. I Math. 316(1993), 23-25.
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh.Math. Sem. Univ. Hamburg 62(1992), 59-64. https://doi.org/10.1007/BF02941618
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991), 431-434. https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- L. Hormander, The analysis of linear partial differential operator I, Springer- Verlag, Berlin-New York, 1983.
- D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- Y. H. Lee and K.W. Jun, A generalization of the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 246(2000), 627-638. https://doi.org/10.1006/jmaa.2000.6832
- T. Matsuzawa, A calculus approach to hyperfunctions III, Nagoya Math. J. 118(1990), 133-153. https://doi.org/10.1017/S0027763000003032
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251(2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046
- Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- L. Schwartz, Theorie des Distributions, Hermann, Paris, 1966.
- F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129. https://doi.org/10.1007/BF02924890
- S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Wiley, New York, 1964.