DOI QR코드

DOI QR Code

Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model

  • Kim, Dae-Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hwang, Hyun-Sook (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Sheen, Seung-Hoon (Department of Neurosurgery, Hallym University Medical Center) ;
  • Heo, Dong-Hwa (Department of Neurosurgery, Hallym University Medical Center) ;
  • Hwang, Gyo-Jun (Department of Neurosurgery, Hallym University Medical Center) ;
  • Kang, Suk-Hyung (Department of Neurosurgery, Hallym University Medical Center) ;
  • Kweon, Hae-Yong (Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Seok-Woo (Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Agicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Park, Kye-Won (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Han, Kyu-Hyung (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Cho, Yong-Jun (Department of Neurosurgery, Hallym University Medical Center) ;
  • Choi, Hyun-Chul (Department of Neurosurgery, Hallym University Medical Center) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2011.08.22
  • Accepted : 2011.08.30
  • Published : 2011.12.31

Abstract

We investigated whether silk fibroin peptide derived from the silkworm, Bombyx mori, could inhibit inflammation and enhance the anti-inflammatory activity of Tat-superoxide dismutase (Tat-SOD), which was previously reported to effectively penetrate various cells and tissues and exert anti-oxidative activity in a mouse model of inflammation. Inflammation was induced by topical treatment of mouse ears with 12-O-tetradecanoylphorbol-13-acetate (TPA). Histological, Western blot, and reverse transcription-polymerase chain reaction data demonstrated that silk fibroin peptide or Tat-SOD alone could suppress elevated levels of cyclooxygenase-2, interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha induced by TPA. Moreover, silk fibroin peptide significantly enhanced the anti-inflammatory activity of Tat-SOD, although it had no influence on in vitro and in vivo transduction of Tat-SOD. Silk fibroin peptide exhibited anti-inflammatory activity in a mice model of inflammation. Therefore, silk fibroin peptide alone or in combination with Tat-SOD might be used as a therapeutic agent for various inflammatory diseases.

Keywords

References

  1. Wu, J. N. (2005) An illustrated Chinese material medica, pp. 140-141, Oxford, New York, U.S.A.
  2. Kim, J. Y., Choi, J. Y., Jeong, J. H., Jang, E. S., Kim, A. S., Kim, S. G., Kweon, H. Y., Jo, Y. Y. and Yeo, J. H. (2010) Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells. BMB Rep. 43, 52-56. https://doi.org/10.5483/BMBRep.2010.43.1.052
  3. Lu, S., Wang, X., Lv, Q., Hu, X., Uppal, N., Omenetto, F. and Kaplan, D. L. (2009) Stabilization of enzymes in silk films. Biomacromolecules 10, 1032-1042. https://doi.org/10.1021/bm800956n
  4. Hyun, C. K., Kim, I. Y. and Frost, S. C. (2004) Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134, 3257-3263. https://doi.org/10.1093/jn/134.12.3257
  5. Igarashi, K., Yoshioka, K., Mizutani, K., Miyakoshi, M., Murakami, T. and Akizawa, T. (2006) Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 70, 517-520. https://doi.org/10.1271/bbb.70.517
  6. Dietz, G. P. (2010) Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechol. 11, 167-174. https://doi.org/10.2174/138920110790909731
  7. Wadia, J. S. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
  8. Liochev, S. I. and Fridovich, I. (2010) Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase. Free Radic. Biol. Med. 48, 1565-1569. https://doi.org/10.1016/j.freeradbiomed.2010.02.036
  9. Ahn, E. H., Kim, D. W., Kang, H. W., Shin, M. J., Won, M. H., Kim, J., Kim, D. J., Kwon, O. S., Kang, T. C., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2010) Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol- 13-acetate-induced inflammation in mice. Toxicology 276, 192-197. https://doi.org/10.1016/j.tox.2010.08.004
  10. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068. https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  11. Kim, D. W., Lee, S. H., Jeong, M. S., Sohn, E. J., Kim, M. J., Jeong, H. J., An, J. J., Jang, S. H., Won, M. H., Hwang, I. K., Cho, S. W., Kang, T. C., Lee, K. S., Park, J., Yoo, K. Y., Eum, W. S. and Choi, S. Y. (2010) Transduced Tat-SAG fusion protein protects against oxidative stress and brain ischemic insult. Free Radic. Biol. Med. 48, 969-977. https://doi.org/10.1016/j.freeradbiomed.2010.01.023
  12. Ahn, E. H., Kim, D. W., Kim, D. S., Woo, S. J., Kim, H. R., Kim, J., Lim, S. S., Kang, T. C., Kim, D. J., Suk, K.T., Park, J., Luo, Q., Eum, W. S., Hwang, H. S. and Choi, S. Y. (2011) Levosulpiride, (S)-(-)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo. BMB Rep. 44, 329-334. https://doi.org/10.5483/BMBRep.2011.44.5.329
  13. Lee, S. H., Jeong, H. J., Kim, D. W., Sohn, E. J., Kim, M. J., Kim, D. S., Kang, T. C., Lim, S. S., Kang, I. J., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2010) Enhancement of HIV-1 Tat fusion protein transduction efficiency by bog blueberry anthocyanins. BMB Rep. 43, 561-566. https://doi.org/10.5483/BMBRep.2010.43.8.561
  14. Eum, W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. I. and Choi, S. Y. (2004) HIV-1 Tat-mediated protein transduction of Cu, Zn-superoxide dismutase into pancreatic beta cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349. https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  15. Floyd, R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2587-2597. https://doi.org/10.1096/fasebj.4.9.2189775
  16. Stanley, P. L., Steiner, S., Havens, M. and Tramposch, K. M. (1991) Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacology 4, 262-271. https://doi.org/10.1159/000210960
  17. Bickers, D. R. and Athar, M. (2006) Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126, 2565-2575. https://doi.org/10.1038/sj.jid.5700340
  18. Grilli, M. and Memo, M. (1999) Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ. 6, 22-27. https://doi.org/10.1038/sj.cdd.4400463
  19. Baldwin, Jr, A. S. (2001) Series introduction: The transcription factor $NF-{\kappa}B$ and human disease. J. Clin. Invest. 107, 3-6. https://doi.org/10.1172/JCI11891
  20. Nathan, C. (2002) Points of control in inflammation. Nature 420, 846-852. https://doi.org/10.1038/nature01320
  21. Mates, J. M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 83, 83-104.
  22. Muzykantov, V. R. (2001) Targeting of superoxide dismutase and catalase to vascular endothelium. J. Control. Release 71, 1-21. https://doi.org/10.1016/S0168-3659(01)00215-2
  23. Wang, F., Arun, P., Friedman, J., Chen, Z. and Van Waes, C. (2009) Current and potential inflammation targeted therapies in head and neck cancer. Curr. Opin. Pharmacol. 9, 389-395. https://doi.org/10.1016/j.coph.2009.06.005
  24. Egbers, J. H., Cloosters, V., Noack, A., Schniewind, B., Thon, L., Klose, S., Kettler, B., von Forsner, C., Kneitz, C., Tepel, J., Adam, D., Wajant, H., Kalthoff, H. and Trauzold, A. (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 68, 1443-1450. https://doi.org/10.1158/0008-5472.CAN-07-5704
  25. Van Waes, C. (2007) Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin. Cancer Res. 13, 1076-1082. https://doi.org/10.1158/1078-0432.CCR-06-2221
  26. Aggarwal, S., Takada, Y., Singh, S., Myers, J. N. and Aggarwal, B. B. (2004) Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int. J. Cancer 111, 679-692. https://doi.org/10.1002/ijc.20333
  27. Dhillon, N., Aggarwal, B. B., Newman, R. A., Wolff, R. A., Kunnumakkara, A. B., Abbruzzese, J. L., Ng, C. S., Badmaev, V. and Kurzrock, R. (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 14, 4491-4499. https://doi.org/10.1158/1078-0432.CCR-08-0024

Cited by

  1. Biotransformation effect of Bombyx Mori L. may play an important role in treating diabetic nephropathy vol.22, pp.11, 2016, https://doi.org/10.1007/s11655-015-2128-z
  2. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion vol.21, pp.1, 2017, https://doi.org/10.1007/s10029-016-1484-8
  3. Topical Peptide Treatments with Effective Anti-Aging Results vol.4, pp.2, 2017, https://doi.org/10.3390/cosmetics4020016
  4. Whitening and Anti-aging Activities of Soluble Silkworm Gland Hydrolysate vol.28, pp.3, 2013, https://doi.org/10.7841/ksbbj.2013.28.3.196
  5. Down-regulation of MAPK/NF-κB signaling underlies anti-inflammatory response induced by transduced PEP-1-Prx2 proteins in LPS-induced Raw 264.7 and TPA-induced mouse ear edema model vol.23, pp.2, 2014, https://doi.org/10.1016/j.intimp.2014.09.008
  6. Enhancement of potency and stability of human extracellular superoxide dismutase vol.48, pp.2, 2015, https://doi.org/10.5483/BMBRep.2015.48.2.093
  7. Anti-apoptotic effects of silk fibroin hydrolysate in RIN5F cell on high glucose condition vol.19, pp.3, 2015, https://doi.org/10.1080/19768354.2015.1042045
  8. PEP-1–SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages vol.63, 2013, https://doi.org/10.1016/j.freeradbiomed.2013.06.005
  9. Efficient cryopreservation of human mesenchymal stem cells using silkworm hemolymph-derived proteins vol.11, pp.8, 2017, https://doi.org/10.1002/term.2116
  10. Effect of aqueous and particulate silk fibroin in a rat model of experimental colitis vol.511, pp.1, 2016, https://doi.org/10.1016/j.ijpharm.2016.06.120
  11. Evaluation of a series of silk fibroin protein-based nonwoven mats for use as an anti-adhesion patch for wound management in robotic surgery vol.106, pp.1, 2017, https://doi.org/10.1002/jbm.a.36225
  12. Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery vol.14, pp.4, 2018, https://doi.org/10.1039/C7SM01631J