DOI QR코드

DOI QR Code

Characteristics of Barkhausen Noise Properties and Hysteresis Loop on Tensile Stressed Rolled Steels

  • Received : 2011.08.09
  • Accepted : 2011.10.04
  • Published : 2011.12.31

Abstract

The rolled steels for welded structure applied tensile stress have been examined by means of magnetic Barkhausen noise (MBN) method and of a physical parameter obtained from a hysteresis loop. The behaviors of MBN parameters and coercive force with tensile stress were discussed in relation to microstructure changes. There is no change in MBN parameters and coercive force below yield strength. The coercive force rises rapidly with tensile stress above yield strength. On the other hand, the rms voltage and the peak in averaged rms voltage take a maximum around yield strength and then decreases. The magnetomotive force at peak in the averaged rms voltage shows a minimum around yield strength. These phenomena are attributed to the combined effects of cell texture and dislocation density. In addition, the behaviors of MBN parameters around yield strength may be reflected by the localized changes in strain field due to the formation of dislocation tangles.

Keywords

References

  1. D. C. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman & Hall, London (1991).
  2. S. Palit Sagar, N. Parida, S. Das, G. Dobmann, and D. K. Bhattacharya, Int. J. Fatigue 27, 317 (2005). https://doi.org/10.1016/j.ijfatigue.2004.06.015
  3. D.-G. Park, J.-H. Hong, C.-I. Ok, J.-W. Kim, and H. C. Kim, IEEE Trans. Magn. 34, 2036 (1998). https://doi.org/10.1109/20.706784
  4. C. C. H. Lo, J. Paulsen, and D. C. Jiles, IEEE Trans. Magn. 40, 2173 (2004). https://doi.org/10.1109/TMAG.2004.832272
  5. A. Mitra, Z. J. Chen, F. Laabs, and D. C. Jiles, Philos. Mag. A 75, 847 (1997). https://doi.org/10.1080/01418619708207206
  6. S. Yamaura, Y. Furuya, and T. Watanabe, Acta Mater. 49, 3019 (2001). https://doi.org/10.1016/S1359-6454(01)00189-6
  7. D. H. L. Ng, K. Cheng, K. S. Cho, Z. Y. Ren, X. Y. Ma, and S. L. I. Chan, IEEE Trans. Magn. 37, 2734 (2001). https://doi.org/10.1109/20.951290
  8. E. R. Kinser, C. C. H. Lo, A. J. Barsic, and D. C. Jiles, IEEE Trans. Magn. 41, 3292 (2005). https://doi.org/10.1109/TMAG.2005.854724
  9. JIS Handbook: Ferrous Materials & Metallurgy II, Japanese Standard Association, Tokyo (2010).
  10. H. Kikuchi, K. Ara, Y. Kamada, and S. Kobayashi, IEEE Trans. Magn. 45, 2744 (2009). https://doi.org/10.1109/TMAG.2009.2020545

Cited by

  1. Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress vol.25, pp.4, 2015, https://doi.org/10.4283/JKMS.2015.25.4.123
  2. Non-destructive monitoring of tensile of mild steel samples by magnetic Barkhausen and ultrasonic methods vol.145, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201814505007