DOI QR코드

DOI QR Code

The Magnetic Field Dependence Properties of Quasi Two Dimensional Electron-piezoelectric Potential Interacting System in GaN and ZnO

  • Lee, S.H. (Department of Electrical Engineering, Donga University) ;
  • Sug, J.Y. (School of Phys. & Ener. Science, Kyungpook National University) ;
  • Lee, J.H. (Department of Materials Science & Engineering, Donga University) ;
  • Lee, J.T. (Department of Electrical Engineering, Donga University)
  • Received : 2011.08.02
  • Accepted : 2011.10.07
  • Published : 2011.12.31

Abstract

We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in GaN and ZnO. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). Through the analysis of this work, we found the increasing properties of the optical Quantum Transition Line Shapes(QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in GaN and ZnO. We also found that QTLW, ${\gamma}(B)_{total}$ of GaN < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B < 25 Tesla.

Keywords

References

  1. C. S. Ting, S. C. Ying, and J. J. Quinn, Phys. Rev. B16, 5394 (1977).
  2. Wu Xiaoguang, F. M. Peeters, and J. T. Devreese, Phys. Rev. B34, 8800 (1986).
  3. P. Grigoglini and G. P. Parravidini, Phys. Rev. B 125, 5180 (1982).
  4. J. R. Barker, J. Phys. C 6, 2633 (1973).
  5. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957). https://doi.org/10.1143/JPSJ.12.570
  6. H. Mori, Progr. Theor. Phys. 33, 423 (1965). https://doi.org/10.1143/PTP.33.423
  7. K. Nagano, T. Karasudani, and H. Okamoto, Progr. Theor. Phys. 63, 1904 (1980). https://doi.org/10.1143/PTP.63.1904
  8. R. Zwanzig, J. Chem. Phys. 33, 1338 (1960) https://doi.org/10.1063/1.1731409
  9. R. Zwanzig, J. Chem. Phys. 60, 2717 (1960).
  10. V. M. Kenkre, Phys. Rev. A4, 2327 (1971)
  11. V. M. Kenkre, Phys. Rev. A6, 769 (1972).
  12. S. G. Jo, N. L. Kang, Y. J. Cho, and S. D. Choi, J. Korean Phys. Soc. 30, 105 (1997).
  13. J. Y. Sug and S. D. Choi, Phys. Rev. E 55, 314 (1997). https://doi.org/10.1103/PhysRevE.55.314
  14. J. Y. Sug and S. D. Choi, Phys. Rev. B 64, 235210 (2001). https://doi.org/10.1103/PhysRevB.64.235210
  15. H. Kobori, T. Ohyama, and E. Otsuka, J. Phys. Soc. Jpn. 59, 2141 (1989).
  16. J. Y. Sug, S. H. Lee, and J. J. Kim, Cent. Eur. J. Phys. 6, 812 (2008). https://doi.org/10.2478/s11534-008-0114-1
  17. J. Y. Sug, S. H. Lee, J. Y. Choi, G. Sa-Gong, and J. J. Kim, Jpn. J. Appl. Phys. 47, 7757 (2008). https://doi.org/10.1143/JJAP.47.7757
  18. J. Y. Sug, S. H. Lee, and J. Y. Choi, J. Korean Phys. Soc. 54, 1403 (2009). https://doi.org/10.3938/jkps.54.1403
  19. C. M. Wolfe and G. E. Stillman, Physical Properties of Semiconductors, Prentice-Hall, Englewood Cliffs, New Jersey (1989).