DOI QR코드

DOI QR Code

열차폐코팅용 La2(Zr1-xHfx)2O7 산화물의 상형성과 열물성

Phase Evolution and Thermo-physical Properties of La2(Zr1-xHfx)2O7 Oxides for Thermal Barrier Coatings

  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 장병국 (물질.재료연구기구 (NIMS) 선진고온재료유닛트)
  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Byung-Koog (High Temperature Materials Unit, National Institute of Materials Science)
  • 투고 : 2011.09.29
  • 심사 : 2011.11.22
  • 발행 : 2011.12.28

초록

As operating temperatures of engines or turbines continually increase for higher efficiency, significant amounts of researches have been focused on finding new materials, which would be alternatives to conventional yttria-stabilized zirconia (YSZ) for thermal barrier coatings (TBCs). In this study, phase evolution and thermo-physical properties of $La_2(Zr_{1-x}Hf_x)_2O_7$ pyrochlore systems are investigated for TBC applications. $La_2(Zr_{1-x}Hf_x)_2O_7$ systems are comprised by selecting $La^{3+}$ as A-site ions and $Zr^{4+}/Hf^{4+}$ as B-site ions in $A_2B_2O_7$ pyrochlore structures. For the developed phases in $La_2(Zr_{1-x}Hf_x)_2O_7$ compositions, thermo-physical properties such as thermal conductivity, thermal expansion coefficient are examined. The potential of these $La_2(Zr_{1-x}Hf_x)_2O_7$ compositions for TBC application is also discussed.

키워드

참고문헌

  1. D. R. Clarke and C. G. Levi: Annu. Rev. Mater. Res., 33 (2003) 383. https://doi.org/10.1146/annurev.matsci.33.011403.113718
  2. G. Carlos and C. G. Levi: Curr. Opin. Solid State Mater. Sci., 8 (2004) 77. https://doi.org/10.1016/j.cossms.2004.03.009
  3. X. Q. Cao, R. Vassen and D. Stoever: J. Euro. Ceram. Soc., 24 (2004) 1. https://doi.org/10.1016/S0955-2219(03)00129-8
  4. D. R. Clarke: Surf. Coat. Technol., 163-164 (2003) 67. https://doi.org/10.1016/S0257-8972(02)00593-5
  5. J. Wu, X. Z. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo and M. I. Osendi: J. Am. Ceram. Soc., 85 (2002) 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
  6. P. K. Schelling, S. R. Phillpot and R. W. Grimes: Philos. Mag. Lett., 84 (2004) 127. https://doi.org/10.1080/09500830310001646699
  7. B.-C. Shim, K.-H. Kwak, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang and S. Kim: J. Korean Powder Metall. Inst., 17 (2010) 148 (Korean). https://doi.org/10.4150/KPMI.2010.17.2.148
  8. Q. Xu, W. Pan, J. D. Wang, C. L. Wan, L. H. Qi, H. Z. Miao, K. Mori and T. Torigoe: J. Am. Ceram. Soc., 89 (2006) 340. https://doi.org/10.1111/j.1551-2916.2005.00667.x
  9. M. A. Subramanian, G. Aravamudan and G. V. Subba Rao: Prog. Solid St. Chem., 15 (1983) 55. https://doi.org/10.1016/0079-6786(83)90001-8
  10. L. Minervini and R. W. Grimes: J. Am. Ceram. Soc., 83 (2000) 1873. https://doi.org/10.1111/j.1151-2916.2000.tb01484.x
  11. A. Chartier, C. Meis, J. P. Crocombette, L. R. Corrales and W. J. Weber: Phys. Rev. B, 67 (2003) 174102. https://doi.org/10.1103/PhysRevB.67.174102
  12. D. R. Clarke and S. R. Phillpot: Mater. Today, 8 (2005) 25.
  13. M. R. Winter and D. R. Clarke: J. Am. Ceram. Soc., 90 (2007) 533. https://doi.org/10.1111/j.1551-2916.2006.01410.x
  14. J. B. Nelson and D. P. Riley: Proc. Phys. Soc., 57 (1945) 160. https://doi.org/10.1088/0959-5309/57/3/302
  15. Y. Du, M. Yashima, T. Koura, M. Kakihana and M. Yoshimura: J. Eur. Ceram. Soc., 15 (1995) 503. https://doi.org/10.1016/0955-2219(95)00040-2
  16. A. V. Shevchenko, L. M. Lopato and Z. A. Zaitseva: Inorg. Mater. (Engl. Transl.), 20 (1984) 1316.
  17. C. R. Stanek and R. W. Grimes: J. Am. Ceram. Soc., 85 (2002) 2139. https://doi.org/10.1111/j.1151-2916.2002.tb00423.x
  18. Y.-M. Chiang, D. Birnie III and W. D. Kingery: Physical Ceramics, John Wiley & Sons, Inc. (1997) 13.
  19. B. P. Mandal, N. Garg, S. M. Sharma and A. K. Tyagi: J. Solid St. Chem., 179 (2006) 1990. https://doi.org/10.1016/j.jssc.2006.03.036
  20. D. S. Smith, S. Fayette, S. Grandjean and C. Martin: J. Am. Ceram. Soc., 86 (2003) 105. https://doi.org/10.1111/j.1151-2916.2003.tb03285.x
  21. P. G. Klemens: High Temp. High Press., 23 (1991) 241.
  22. C. Kittel: Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, Inc. (2005) 125.