DOI QR코드

DOI QR Code

Investigation of Catalytic Activity Through Controlling Its Size and Composition of RhPt Bimetallic Nanoparticles

RhPt 이종금속 나노입자의 크기 및 조성 제어를 통한 촉매 활성도에 관한 연구

  • Park, Jeong-Young (Graduate School of EEWS (WCU) and NanoCentury KI, KAIST(Korea Advanced Institute of Science and Technology)) ;
  • Kim, Sun-Mi (Graduate School of EEWS (WCU) and NanoCentury KI, KAIST(Korea Advanced Institute of Science and Technology))
  • 박정영 (한국과학기술원 EEWS 대학원) ;
  • 김선미 (한국과학기술원 EEWS 대학원)
  • Received : 2011.09.22
  • Accepted : 2011.11.03
  • Published : 2011.12.28

Abstract

This study shows that catalytic activity of bimetallic RhPt nanoparticle arrays under CO oxidation can be tuned by varying the size and composition of nanoparticles. The tuning of size of RhPt nanoparticles was achieved by changing concentration of rhodium and platinum precursors in one-step polyol synthesis. Two-dimensional RhPt bimetallic nanoparticle arrays in different size and composition were prepared through Langmuir-Blodgett thin film technique. CO oxidation was carried out on these two-dimensional nanoparticle arrays, revealing higher activity on the smaller nanoparticles compared to the bigger nanoparticles. X-ray photoelectron spectroscopy (XPS) results indicate the preferential surface segregation of Rh compared to Pt on the smaller nanoparticles, which is consistent with the thermodynamic analysis. Because the catalytic activity is associated with differences in the rates of $O_2$ dissociative adsorption between Pt and Rh, this paper suppose that the surface segregation of Rh on the smaller bimetallic nanoparticles is responsible for the higher catalytic activity in CO oxidation. This result suggests a control mechanism of catalytic activity via synthetic approaches of colloid nanoparticles, with possible application in rational design of nanocatalysts.

Keywords

References

  1. G. A. Somojai and J. Y. Park: Surface Science, 603 (2009) 1293. https://doi.org/10.1016/j.susc.2008.08.030
  2. X. C. Su, P. S. Cremer, Y. R. Shen and G. A. Somojai: Journal of the American Chemical Society, 119 (1997) 3994. https://doi.org/10.1021/ja9638723
  3. D. W. Goodman: Chemical Reviews, 95 (1995) 523. https://doi.org/10.1021/cr00035a004
  4. H. Over, Y. D. Kim, A. P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante and G. Ertl: Science, 287 (2000) 1474. https://doi.org/10.1126/science.287.5457.1474
  5. J. Greeley, J. K. Norskov and M. Mavrikakis: Annual Review of Physical Chemistry, 53 (2002) 319. https://doi.org/10.1146/annurev.physchem.53.100301.131630
  6. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon: Journal of Catalysis, 144 (1993) 175. https://doi.org/10.1006/jcat.1993.1322
  7. M. Valden, X. Lai and D. W. Goodman: Science, 281 (1998) 1647. https://doi.org/10.1126/science.281.5383.1647
  8. M. S. Chen, Y. Cal, Z. Yan, K. K. Gath, S. Axnanda and D. W. Goodman: Surface Science, 601 (2007), 5326. https://doi.org/10.1016/j.susc.2007.08.019
  9. D. C. Lim, I. Lopez-Salido and Y. D. Kim: Surface Science, 598 (2005) 96. https://doi.org/10.1016/j.susc.2005.08.030
  10. S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Y. Huang and G. A. Somorjai: Nano Letters, 10 (2010) 2709. https://doi.org/10.1021/nl101700j
  11. M. E. Grass, Y. W. Zhang, D. R. Butcher, J. Y. Park, Y. M. Li, H. Bluhm, K. M. Bratlie, T. F. Zhang and G. A. Somorjai: Angewandte Chemie-International Edition, 47 (2008) 8893. https://doi.org/10.1002/anie.200803574
  12. M. D. Ackermann, T. M. Pedersen, B. L. M. Hendriksen, O. Robach, S. C. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer and J. W. M. Frenken: Physical Review Letters, 95 (2005).
  13. A. J. Nagy, G. Mestl and R. Schlogl: Journal of Catalysis, 188 (1999) 58. https://doi.org/10.1006/jcat.1999.2651
  14. J. Y. Park, C. Aliaga, J. R. Renzas, H. Lee and G. A. Somorjai: Catalysis Letters, 129 (2009) 1. https://doi.org/10.1007/s10562-009-9871-8
  15. C. Aliaga, J. Y. Park, Y. Yamada, H. S. Lee, C. K. Tsung, P. D. Yang and G. A. Somorjai: Journal of Physical Chemistry C, 113 (2009) 6150. https://doi.org/10.1021/jp8108946
  16. G. A. Somorjai: Introduction to Surface Chemistry and Catalysis, Wiley, New York, 1994.
  17. T. Engel and G. Ertl: Journal of Chemical Physics, 69 (1978) 1267. https://doi.org/10.1063/1.436666
  18. J. Y. Park, Y. Zhang, M. Grass, T. Zhang and G. A. Somorjai: Nano Letters, 8 (2008) 673 https://doi.org/10.1021/nl073195i
  19. G. Ouyang, C. X. Wang and G. W. Yang: Chemical Reviews, 109 (2009) 4221. https://doi.org/10.1021/cr900055f
  20. Q. Jiang, J. C. Li and B. Q. Chi: Chemical Physics Letters, 366 (2002) 551. https://doi.org/10.1016/S0009-2614(02)01641-X

Cited by

  1. Characteristics of Pt/C Nano-catalyst Synthesized by Arc Plasma Deposition vol.19, pp.1, 2012, https://doi.org/10.4150/KPMI.2012.19.1.006