DOI QR코드

DOI QR Code

Synthesis and Catalytic Characteristics of Thermally Stable TiO2/Pt/SiO2 Hybrid Nanocatalysts

고온에서 안정적인 TiO2/Pt/SiO2 하이브리드 나노촉매의 제작 및 촉매 특성

  • Reddy, A. Satyanarayana (Graduate School of EEWS (WCU) and NanoCentury KI, KAIST (Korea Advanced Institute of Science and Technology)) ;
  • Jung, Chan-Ho (Graduate School of EEWS (WCU) and NanoCentury KI, KAIST (Korea Advanced Institute of Science and Technology)) ;
  • Kim, Sun-Mi (Graduate School of EEWS (WCU) and NanoCentury KI, KAIST (Korea Advanced Institute of Science and Technology)) ;
  • Yun, Jung-Yeul (Korea Institute of Materials Science) ;
  • Park, Jeong-Young (Graduate School of EEWS (WCU) and NanoCentury KI, KAIST (Korea Advanced Institute of Science and Technology))
  • ;
  • 정찬호 (한국과학기술원 EEWS 대학원) ;
  • 김선미 (한국과학기술원 EEWS 대학원) ;
  • 윤중열 (한국기계연구원 부설 재료연구소) ;
  • 박정영 (한국과학기술원 EEWS 대학원)
  • Received : 2011.09.19
  • Accepted : 2011.10.28
  • Published : 2011.12.28

Abstract

Thermally stable $TiO_2$/Pt/$SiO_2$ core-shell nanocatalyst has been synthesized by chemical processes. Citrated capped Pt nanoparticles were deposited on amine functionalized silica produced by Stober process. Ultrathin layer of titania was coated on Pt/$SiO_2$ for preventing sintering of the metal nanoparticles at high temperatures. Thermal stability of the metal-oxide hybrid catalyst was demonstrated heating the sample up to $600^{\circ}C$ in air and by investigating the morphology and integrity of the structure by transmission electron spectroscopy. The surface analysis of the constituent elements was performed by X-ray photoemission spectroscopy. The catalytic activity of the hybrid catalysts was investigated by CO oxidation reaction with oxygen as a model reaction.

Keywords

References

  1. R. Narayanan and M. A. El-Sayed: Top. Catal., 47 (2005) 15. https://doi.org/10.1007/s11244-007-9029-0
  2. G. A. Somorjai and J. Y. Park: Top. Catal., 49 (2008) 126. https://doi.org/10.1007/s11244-008-9077-0
  3. G. A. Somorjai and J. Y. Park: Angewandte Chemie Int. Ed., 47 (2008) 9212. https://doi.org/10.1002/anie.200803181
  4. J. Y. Park, C. Aliaga, J. R. Renzas, H. Lee and G. A. Somorjai: Catalysis Letters, 129 (2009) 1. https://doi.org/10.1007/s10562-009-9871-8
  5. S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang and G. A. Somorjai: Nature. Mater., 8 (2009) 126. https://doi.org/10.1038/nmat2329
  6. I. Lee, Q. Zhang, J. Ge, Y. Yin and F. Zaera: Nano Res., 4 (2011) 115. https://doi.org/10.1007/s12274-010-0059-8
  7. K. Gude and R. Narayanan: J. Phys. Chem. C, 114 (2010) 6356. https://doi.org/10.1021/jp100061a
  8. A. S. Reddy, S. Kim, H. Y. Jeong, S. Jin, K. Qadir, K. Jung, C. H. Jung, J. Y. Yun, J. Y. Cheon, J.-M. Yang, S. H. Joo, O. Terasakia and J. Y. Park: Chem. Comm., 47 (2011) 8412. https://doi.org/10.1039/c1cc12022k
  9. Q. Zhang, I. Lee, J. Ge, F. Zaera and Y. Yin: Adv. Funct. Mater., 20 (2010) 2201. https://doi.org/10.1002/adfm.201000428
  10. S. H. Lim, N. Phonthammachai, S. S. Pramana and T. J. White: Langmuir, 24 (2008) 6226. https://doi.org/10.1021/la703899j
  11. J. Y. Park: Langmuir, 27 (2011) 2509. https://doi.org/10.1021/la104353f
  12. X. Su, P. S. Cremer, Y. R. Shen and G. A. Somorjai: J. Am. Chem. Soc., 119 (1997) 3994. https://doi.org/10.1021/ja9638723
  13. S. J. Tauster, S. C. Fung and R. L. Garten: J. Am. Chem. Soc., 100 (1978) 170. https://doi.org/10.1021/ja00469a029
  14. K. Hayek, M. Fuchs, B. Klotzer, W. Reichl and G. Rupprechter: Topics in Catalysis, 13 (2000) 55. https://doi.org/10.1023/A:1009072519733
  15. J. Y. Park, J. R. Renzas, A. M. Contreras and G. A. Somorjai: Topics in Catalysis, 46 (2007) 217. https://doi.org/10.1007/s11244-007-0331-7