DOI QR코드

DOI QR Code

Growth and UV Emission of Preferred Oriented ZnO Nanowires Using Hydrothermal Process

수열합성법을 이용하여 우선 배향된 ZnO 나노와이어 성장 및 발광 특성

  • Kim, Jong-Hyun (Department of Materials Science and Engineering, Myongji University) ;
  • Lim, Yun-Soo (Department of Materials Science and Engineering, Myongji University) ;
  • Kim, Sung-Hyun (Energy Nano Materials Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Jo, Jin-Woo (Energy Nano Materials Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Jeong, Dae-Yong (School of Materials Engineering, Inha University)
  • 김종현 (명지대학교 신소재공학과) ;
  • 임연수 (명지대학교 신소재공학과) ;
  • 김성현 (전자부품연구원 에너지나노소재연구센터) ;
  • 조진우 (전자부품연구원 에너지나노소재연구센터) ;
  • 정대용 (인하대학교 신소재공학부)
  • Received : 2011.10.26
  • Accepted : 2011.11.09
  • Published : 2011.12.27

Abstract

1-D ZnO nanowires have been attractive for their peculiar properties and easy growth at relatively low temperature. The length, diameter, and density of ZnO nanowires were determined by the several synthetic parameters, such as PEI concentration, growth time, temperature, and zinc salt concentration. The ZnO nanowires were grown on the <001> oriented seed layer using the hydrothermal process with zinc nitrate and HMTA (hexamethylenetetramine) and their structure and optical properties were characterized. The morphology, length and diameter of the nanowires were strongly affected by the relative and/or absolute concentration of $Zn^{2+}$ and $OH^{-1}$ and the hydrothermal temperature. When the concentrations of the zinc nitrate HMTA were the same as 0.015 M, the length and diameter of the nanowires were $1.97{\mu}m$ and $0.07{\mu}m$, respectively, and the aspect ratio was 28.1 with the preferred orientation along the <001> direction. XRD and TEM results showed a high crystallinity of the ZnO nanowires. Optical measurement revealed that ZnO nanowires emitted intensive stimulated UV at 376 nm without showing visible emission related to oxygen defects.

Keywords

References

  1. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang and J. H. Song, Appl. Phys. Lett., 83, 1689 (2003). https://doi.org/10.1063/1.1605808
  2. D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank and G. Pensl, Appl. Phys. A, 88, 147 (2007). https://doi.org/10.1007/s00339-007-3956-2
  3. M. Y. Cho, M. S. Kim, G. S. Kim, H. Y. Choi, S. M. Jeon, K. G. Yim, D. Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee and J. Y. Leem, Kor. J. Mater. Res., 20(5), 262 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.262
  4. J. Q. Hu and Y. Bando, Appl. Phys. Lett., 82, 1401 (2003). https://doi.org/10.1063/1.1558899
  5. M. Mo, J. C. Yu, L. Zhang and S. K. A. Li, Adv. Mater., 17, 756 (2005). https://doi.org/10.1002/adma.200401477
  6. K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien, J. Mater. Chem., 14, 2575 (2004). https://doi.org/10.1039/b404784b
  7. J. Qiu, X. Li, F. Zhuge, X. Gan, X. Gao, W. He, S. J. Park, H. K. Kim and Y. H. Hwang, Nanotechnology, 21, 195602 (2010). https://doi.org/10.1088/0957-4484/21/19/195602
  8. K. M. McPeak, M. A. Becker, N. G. Britton, H. Majidi, B. A. Bunker and J. B. Baxter, Chem. Mater., 22, 6162 (2010). https://doi.org/10.1021/cm102155m
  9. H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou and X. Zhao, Appl. Phys. Lett., 94, 013503 (2009). https://doi.org/10.1063/1.3064161
  10. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, Adv. Funct. Mater., 12, 323 (2002). https://doi.org/10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
  11. B. Liu and H. C. Zeng, J. Am. Chem. Soc., 125, 4430 (2003). https://doi.org/10.1021/ja0299452
  12. K. W. Chae, Q. Zhang, J. S. Kim, Y. H. Jeong and G. Cao, Beilstein J. Nanotechnol., 1, 128 (2010). https://doi.org/10.3762/bjnano.1.15
  13. J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu and Y. Qian, J. Phys. Chem. B, 109, 9463 (2005). https://doi.org/10.1021/jp050485j
  14. B. Meyer and D. Marx, Phy. Rev. B Condens. Matter, 67, 035403 (2003). https://doi.org/10.1103/PhysRevB.67.035403
  15. Y. Zhou, W. Wu, G. Hu, H. Wu and S. Cui, Mater. Res. Bull., 43, 2113 (2008). https://doi.org/10.1016/j.materresbull.2007.09.024
  16. Z. Wang, X. Qian, J. Yin and Z. Zhu, Langmuir, 20, 3441 (2004). https://doi.org/10.1021/la036098n