참고문헌
- Aarseth, S. J., Turner, E. L., & Gott, J. R. 1979, N-Body Simulations of Galaxy Clustering. I - Initial Conditions and Galaxy Collapse Times, ApJ, 228, 664 https://doi.org/10.1086/156892
- Abbott, T., et al. 2005, The Dark Energy Survey, astro-ph/0510346
- Albrecht, A., et al. 2006, Report of the Dark Energy Task Force, astro-ph/0609591
- Bertschinger, E. 1998, Simulations of Structure Formation in the Universe, ARAA, 36, 599 https://doi.org/10.1146/annurev.astro.36.1.599
- Bett, P., Eke, V., Frenk, C. S., Jenkins, A., Helly, J., & Navarro, J. 2007, The Spin and Shape of Dark Matter Haloes in the Millennium Simulation of a Cold Dark Matter Universe, MNRAS, 376, 215 https://doi.org/10.1111/j.1365-2966.2007.11432.x
- Blake, C., et al. 2008, The Wiggle Z Dark Energy Survey, Astronomy & Geophysics, 49, 19
- Bode, P., Bahcall, N. A., Ford, E. B., & Ostriker, J. P. 2001, Evolution of the Cluster Mass Function: GPC3 Dark Matter Simulations, ApJ, 551, 15 https://doi.org/10.1086/320077
- Carlberg, R. G., & Couchman, H. M. P. 1989, Mergers and Bias in a Cold Dark Matter Cosmology, ApJ, 340, 47 https://doi.org/10.1086/167375
- Carnero, A., Sanchez, E., Crocce, M., Cabre, A., & Gaztanaga, E. 2011, Clustering of Photometric Luminous Red Galaxies - II. Cosmological Implications from the Baryon Acoustic Scale, arXiv:1104.5426
- Choi, Y.-Y., Park, C., Kim, J., Gott, J. R., Weinberg, D. H., Vogeley, M. S., & Kim, S. S. 2010, Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models, ApJS, 190, 181 https://doi.org/10.1088/0067-0049/190/1/181
- Cimatti, A., et al. 2008, GMASS Ultradeep Spec- troscopy of Galaxies at z -2. II. Superdense Passive Galaxies: How Did They Form and Evolve?, A&A, 482, 21 https://doi.org/10.1051/0004-6361:20078739
- Colberg, J. M., White, S. D. M., Yoshida, N., et al. 2000, Clustering of Galaxy Clusters in Cold Dark Matter Universes, MNRAS, 319, 209 https://doi.org/10.1046/j.1365-8711.2000.03832.x
- Cole, S., et al. 2005, The 2dF Galaxy Redshift Survey: Power-Spectrum Analysis of the Final Data Set and Cosmological Implications, MNRAS, 362, 505 https://doi.org/10.1111/j.1365-2966.2005.09318.x
- Colless, M., et al. 2001, The 2dF Galaxy Redshift Sur- vey: Spectra and Redshifts, MNRAS, 328, 1039 https://doi.org/10.1046/j.1365-8711.2001.04902.x
- Crocce, M., & Scoccimarro, R. 2008, Nonlinear Evolu- tion of Baryon Acoustic Oscillations, Phys. Rev. D., 77, 3533
- Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, Transients from Initial Conditions in Cosmological Simulations, MNRAS, 373, 369 https://doi.org/10.1111/j.1365-2966.2006.11040.x
- Crotts, A., et al. 2005, Joint Efficient Dark-energy Investigation (JEDI): a Candidate Implementation of the NASA-DOE Joint Dark Energy Mission (JDEM), astro-ph/0507043
- Dalal, N., Dore, O., Huterer, D., & Shirokov, A. 2008, Imprints of Primordial Non-Gaussianities on Large-Scale Structure: Scale-Dependent Bias and Abundance of Virialized Objects, Phys. Rev. D., 77, 123514 https://doi.org/10.1103/PhysRevD.77.123514
- Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, The Evolution of Large-Scale Struc- ture in a Universe Dominated by Cold Dark Matter, ApJ, 292, 371 https://doi.org/10.1086/163168
- Desjacques, V., & Seljak, U. 2010, Signature of Primor- dial Non-Gaussianity of 3 Type in the Mass Func- tion and Bias of Dark Mtter Haloes, Phys. Rev. D., 81, 3006
- Desjacques, V., Seljak, U., & Iliev, I. T. 2009, Scale- Dependent Bias Induced by Local Non-Gaussianity: a Comparison to N-Body Simulations, MNRAS, 396, 85 https://doi.org/10.1111/j.1365-2966.2009.14721.x
- Diemand, J., & Moore, B. 2009, The Structure and Evolution of Cold Dark Matter Halos, arXiv:0906.4340
- Diemand, J., Kuhlen, M., Madau, P., Zemp, M., Moore, B., Potter, D., & Stadel, J. 2008, Clumps and Streams in the Local Dark Matter Distribution, Nature, 454, 735 https://doi.org/10.1038/nature07153
- Diemand, J., Moore, B., & Stadel, J. 2004, Convergence and Scatter of Cluster Density Profiles, MNRAS, 353, 624 https://doi.org/10.1111/j.1365-2966.2004.08094.x
- Dubinski, J., Kim, J., Park, C., & Humble, R. 2004, GOTPM: a Parallel Hybrid Particle-Mesh Treecode, New Astronomy, 9, 111 https://doi.org/10.1016/j.newast.2003.08.002
- Efstathiou, G., & Eastwood, J. W. 1981, On the Clustering of Particles in an Expanding Universe, MNRAS, 194, 503 https://doi.org/10.1093/mnras/194.3.503
- isenstein, D. J., et al. 2005, Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, ApJ, 633, 560 https://doi.org/10.1086/466512
- Eisenstein, D. J., & Hu, W. 1999, Power Spectra for Cold Dark Matter and Its Variants, ApJ, 511, 5 https://doi.org/10.1086/306640
- isenstein, D. J., & Hu, W. 1998, Baryonic Features in the Matter Transfer Function, ApJ, 496, 605 https://doi.org/10.1086/305424
- Gao, L., et al. 2008, The Redshift Dependence of the Structure of Massive Cold Dark Matter Haloes, MNRAS, 387, 536 https://doi.org/10.1111/j.1365-2966.2008.13277.x
- Gao, L., & White, S. D. M. 2007, Assembly Bias in the Clustering of Dark Matter Haloes, MNRAS, 377, 5 https://doi.org/10.1111/j.1745-3933.2007.00292.x
- Gaztanaga, E., Cabre, A., & Hui, L. 2009, Clustering of Luminous Red Galaxies - IV. Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z), MNRAS, 399, 1663 https://doi.org/10.1111/j.1365-2966.2009.15405.x
- elb, J. M., & Bertschinger, E. 1994, Cold Dark Matter. 1: The Formation of Dark Halos, ApJ, 436, 467 https://doi.org/10.1086/174922
- Gott, J. R., Choi, Y.-Y., Park, C., & Kim, J. 2009, Three-Dimensional Genus Topology of Luminous Red Galaxies, ApJ, 695, 45
- Gott, J. R., et al. 2008, Genus Topology of Structure in the Sloan Digital Sky Survey: Model Testing, ApJ, 675, 16
- Gott, J. R., Juric, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., Bahcall, N., & Brinkmann, J. 2005, A Map of the Universe, ApJ, 624, 463 https://doi.org/10.1086/428890
- Gott, J. R., Dickinson, M., & Melott, A. L. 1986, The Sponge-Like Topology of Large-Scale Structure in the Universe, ApJ, 306, 341 https://doi.org/10.1086/164347
- Governato, F., Babul, A., Quinn, T., et al. 1999, Properties of Galaxy Clusters: Mass and Correlation Functions, MNRAS, 307, 949 https://doi.org/10.1046/j.1365-8711.1999.02706.x
- Green, J., et al. 2011, Wide-Field InfraRed Survey Telescope (WFIRST) Interim Report, arXiv: 1108.1374
- Groth, E. J., & Peebles, P. J. E. 1975, N-Body Studies of the Clustering of Galaxies, BAAS, 7, 425
- Henon, M., & Heiles, C. 1964, The Applicability of the Third Integral of Motion: Some Numerical Experiments, AJ, 69, 73 https://doi.org/10.1086/109234
- Hill, G. J., Gebhardt, K., Komatsu, E., & MacQueen, P. J. 2004, The Hobby-Eberly Telescope Dark Energy Experiment, AIPC, 743, 224
- Jee, I., Park, C., & Kim, J. 2011, A Second-Order Bias Model for the Logarithmic Halo Mass Density, ApJ, submitted
- nkins, A., et al. 2001, The Mass Function of Dark Matter Haloes, MNRAS, 321, 372 https://doi.org/10.1046/j.1365-8711.2001.04029.x
- Jenkins, A., Frenk, C. S., Pearce, F. R., et al. 1998, Evolution of Structure in Cold Dark Matter Universes, ApJ, 499, 20 https://doi.org/10.1086/305615
- Jeong, D., & Komatsu, E. 2009, Primordial Non- Gaussianity, Scale-dependent Bias, and the Bispec- trum of Galaxies, ApJ, 703, 1230 https://doi.org/10.1088/0004-637X/703/2/1230
- ing, Y. P., Suto, Y., & Mo, H. J. 2007, The Dependence of Dark Halo Clustering on Formation Epoch and Concentration Parameter, ApJ, 657, 664
- ing, Y. P., & Suto, Y. 2002, Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations, ApJ, 574, 538
- Kaiser, N., et al. 2002, Pan-STARRS: A Large Synoptic Survey Telescope Array, Proc. SPIE, 4836, 154
- Kazin, E. A., Blanton, M. R., Scoccimarro, R., McBride, C. K., & Berlind, A. A. 2010, The Baryonic Acoustic Feature and Large-Scale Clustering in the Sloan Digital Sky Survey Luminous Red Galaxy Sample, ApJ, 710, 1444 https://doi.org/10.1088/0004-637X/710/2/1444
- Kim, J., Park, C., Gott, J. R., & Dubinski, J. 2009, The Horizon Run N-Body Simulation: Baryon Acoustic Oscillations and Topology of Large-scale Structure of the Universe, ApJ, 701, 1547 https://doi.org/10.1088/0004-637X/701/2/1547
- Kim, J., Park, C., & Choi, Y.-Y. 2008, A Subhalo- Galaxy Correspondence Model of Galaxy Biasing, ApJ, 683, 123 https://doi.org/10.1086/589566
- im, J., & Park, C. 2006, A New Halo-Finding Method for N-Body Simulations, ApJ, 639, 600 https://doi.org/10.1086/499761
- Klypin, A., Kravtsov, A. V., Bullock, J. S., & Primack, J. R. 2001, Resolving the Structure of Cold Dark Matter Halos, ApJ, 554, 903
- Komatsu, E., et al. 2011, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, ApJS, 192, 18 https://doi.org/10.1088/0067-0049/192/2/18
- Komatsu, E., et al. 2009, Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation, ApJS, 180, 330 https://doi.org/10.1088/0067-0049/180/2/330
- Kowalski, M., et al. 2008, Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets, ApJ, 686, 749 https://doi.org/10.1086/589937
- Li, Y., Mo, H. J., & Gao, L. 2008, On Halo Formation Times and Assembly Bias, MNRAS, 389, 1419 https://doi.org/10.1111/j.1365-2966.2008.13667.x
- LoVerde, M., Hui, L., & Gaztanaga, E. 2008, Lensing Corrections to Features in the Angular Two-Point Correlation Function and Power Spectrum, Phys. Rev. D., 77, 3512
- Lukic, J., Heitmann, K., Habib, S., Bashinsky, S., & Ricker, P. M. 2007, The Halo Mass Function: High- Redshift Evolution and Universality, ApJ, 671, 1160 https://doi.org/10.1086/523083
- Maccio, A. V., Dutton, A. A., van den Bosch, F. C., Moore, B., Potter, D., & Stadel, J. 2007, Concentration, Spin and Shape of Dark Matter Haloes: Scatter and the Dependence on Mass and Environment, MNRAS, 378, 55 https://doi.org/10.1111/j.1365-2966.2007.11720.x
- Matsubara, T. 2004, Correlation Function in Deep Redshift Space as a Cosmological Probe, ApJ, 615, 573 https://doi.org/10.1086/424561
- Miyoshi, K., & Kihara, T. 1975, Development of the Correlation of Galaxies in an Expanding Universe, PASJ, 27, 333
- Montesano, F., Sanchez, A. G., & Phleps, S. 2010, A New Model for the Full Shape of the Large-Scale Power Spectrum, MNRAS, 408, 2397 https://doi.org/10.1111/j.1365-2966.2010.17292.x
- Moore, B., Governato, F., Quinn, T., Stadel, J., & Lake, G. 1998, Resolving the Structure of Cold Dark Matter Halos, ApJ, 499, 5 https://doi.org/10.1086/311333
- Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, A Universal Density Profile from Hierarchical Clustering, ApJ, 490, 493 https://doi.org/10.1086/304888
- Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, The Structure of Cold Dark Matter Halos, ApJ, 462, 563 https://doi.org/10.1086/177173
- Neto, A., et al. 2007, The Statistics of CDM Halo Concentrations, MNRAS, 381, 1450 https://doi.org/10.1111/j.1365-2966.2007.12381.x
- Park, C. 1997, A Particle-Mesh Code for the Next Generation Cosmological N-Body Simulations, JKAS, 30, 191
- Park, C. 1990, Large N-Body Simulations of a Universe Dominated by Cold Dark Matter MNRAS, 242, 59 https://doi.org/10.1093/mnras/242.1.59
- Park C., & Kim, Y. R. 2010, Large-Scale Structure of the Universe as a Cosmic Standard Ruler, ApJL, 715, L185 https://doi.org/10.1088/2041-8205/715/2/L185
- Park, C., Kim, J., & Gott, J. R. 2005, Effects of Gravitational Evolution, Biasing, and Redshift Space Distortion on Topology, ApJ, 633, 1 https://doi.org/10.1086/452621
- Park, C., Colley,W. N., Gott, J. R., Ratra, B., Spergel, D. N., & Sugiyama, N. 1998, Cosmic Microwave Background Anisotropy Correlation Function and Topology from Simulated Maps for MAP, ApJ, 506, 473 https://doi.org/10.1086/306259
- Park, C., Vogeley, M. S., Geller, M. J., & Huchra, J. P. 1994, Power Spectrum, Correlation Function, and Tests for Luminosity Bias in the CfA Redshift Survey, ApJ, 431, 569 https://doi.org/10.1086/174508
- Park, C., & Gott, J. R. 1991, Simulation of Deep One-and Two-Dimensional Redshift Surveys, MNRAS, 249, 288 https://doi.org/10.1093/mnras/249.2.288
- Peebles, P. J. E. 1982, The Peculiar Velocity around a Hole in the Galaxy Distribution, ApJ, 257, 438 https://doi.org/10.1086/160001
- Peebles, P. J. E. 1970, Structure of the Coma Cluster of Galaxies, ApJ, 75, 13 https://doi.org/10.1086/110933
- Percival, W. J., et al. 2010, Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy Sample, MNRAS, 401, 2148 https://doi.org/10.1111/j.1365-2966.2009.15812.x
- Percival, W. J., Cole, S., Eisenstein, D. J., Nichol, R. C., Peacock, J. A., Pope, A. C., & Szalay, A. S. 2007, Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey, MNRAS, 381, 1053 https://doi.org/10.1111/j.1365-2966.2007.12268.x
- Perlmutter, S., et al. 1999, Measurements of Omega and Lambda from 42 High-Redshift Supernovae, ApJ, 517, 565 https://doi.org/10.1086/307221
- Press, W. H., & Schechter, P. 1974, Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation, ApJ, 187, 425 https://doi.org/10.1086/152650
- Reed, D., et al. 2005, Evolution of the Density Profiles of Dark Matter Haloes, MNRAS, 357, 82 https://doi.org/10.1111/j.1365-2966.2005.08612.x
- Reid, B. A., et al. 2010, Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, MNRAS, 404, 60 https://doi.org/10.1111/j.1745-3933.2010.00835.x
- Riess, A. G., et al. 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ, 116, 1009 https://doi.org/10.1086/300499
- Sanchez, A. G., Crocce, M., Cabre, A., Baugh, C. M., & Gaztanaga, E. 2009, Cosmological Parameter Constraints from SDSS Luminous Red Galaxies: a New Treatment of Large-Scale Clustering, MNRAS, 400, 1643 https://doi.org/10.1111/j.1365-2966.2009.15572.x
- Sanchez, A. G., et al. 2006, Cosmological Parameters from Cosmic Microwave Background Measurements and the Final 2dF Galaxy Redshift Survey Power Spectrum, MNRAS, 366, 189 https://doi.org/10.1111/j.1365-2966.2005.09833.x
- Schlegel, D., et al. 2011, The BigBOSS Experiment, arXiv: 1106.1706
- Schlegel, D., White, M., & Eisenstein, D. 2009, The Baryon Oscillation Spectroscopic Survey: Precision measurement of the absolute cosmic distance scale, The Astronomy and Astrophysics Decadal Survey, Science White Papers, 314
-
Shandarin, S., Habib, S., & Heitmann, K. 2010, Origin of the Cosmic Network in
$\Lambda$ CDM: Nature vs Nurture, Phys. Rev. D., 81, 3006 - Spergel, D. N., et al. 2003, First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, ApJS, 148, 175 https://doi.org/10.1086/377226
- Springel, V., et al. 2008, The Aquarius Project: the Subhaloes of Galactic Haloes, MNRAS, 391, 1685 https://doi.org/10.1111/j.1365-2966.2008.14066.x
- Springel, V., et al. 2005, Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars, Nature, 435, 629 https://doi.org/10.1038/nature03597
- Stadel, J., et al. 2009, Quantifying the Heart of Darkness with GHALO - a Multibillion Particle Simulation of a Galactic Halo, MNRAS, 398, 21 https://doi.org/10.1111/j.1745-3933.2009.00699.x
- Sugiyama, N. 1995, Cosmic Background Anisotropies in Cold Dark Matter Cosmology, ApJS, 100, 281 https://doi.org/10.1086/192220
- Suto, Y., & Suginohara, T. 1991, Redshift-Space Correlation Functions in the Cold Dark Matter Scenario, ApJL, 370, L15 https://doi.org/10.1086/185966
- eyssier, R., et al. 2009, Full-Sky Weak-Lensing Simulation with 70 Billion Particles, A&A, 497, 335 https://doi.org/10.1051/0004-6361/200810657
- Tyson, J. A., & LSST 2004, The Large Synoptic Survey Telescope Science Requirements, AAS, 20510801
- van Albada, G. B. 1961, Evolution of Clusters of Galaxies under Gravitational Forces, AJ, 66, 590 https://doi.org/10.1086/108469
- Verde, L., & Matarrese, S. 2009, Detectability of the Effect of Inflationary Non-Gaussianity on Halo Bias, ApJ, 706, 91 https://doi.org/10.1088/0004-637X/706/1/L91
- ogeley, M. S., Park, C., Geller, M. J., & Huchra, J. P. 1992, Large-Scale Clustering of Galaxies in the CfA Redshift Survey, ApJ, 391, 5 https://doi.org/10.1086/186385
- Wambsganss, J., Bode, P., & Ostriker, J. P. 2004, Giant Arc Statistics in Concord with a Concordance Lambda Cold Dark Matter Universe, ApJL, 606, L93 https://doi.org/10.1086/421459
- Warren, M. S., Quinn, P. J., Salmon, J. K., & Zurek, W. H. 1992, Dark Halos Formed via Dissipationless Collapse. I - Shapes and Alignment of Angular Momentum, ApJ, 399, 405 https://doi.org/10.1086/171937
- White, S. D. M. 1976, The Dynamics of Rich Clusters of Galaxies, MNRAS, 177, 717 https://doi.org/10.1093/mnras/177.3.717
- White, S. D. M., Davis, M., Efstathiou, G., & Frenk, C. S. 1987, Galaxy Distribution in a Cold Dark Matter Universe, Nature, 330, 451 https://doi.org/10.1038/330451a0
- White, S. D. M., & Rees, M. J. 1978, Core Condensation in Heavy Halos - A Two-Stage Theory for Galaxy Formation and Clustering, MNRAS, 183, 341 https://doi.org/10.1093/mnras/183.3.341
- Yoo, J., Fitzpatrick, A. L., & Zaldarriaga, M. 2009, New Perspective on Galaxy Clustering as a Cos- mological Probe: General Relativistic Effects, Phys. Rev. D., 80, 3514
- York, D. G., et al. 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579 https://doi.org/10.1086/301513
- Zheng, Z., & Weinberg, D. H. 2007, Breaking the Degeneracies between Cosmology and Galaxy Bias, ApJ, 659, 1 https://doi.org/10.1086/512151
- Zurek, W. H., Quinn, P. J., Salmon, J. K., & Warren, M. S. 1994, Large-Scale Structure after COBE: Peculiar Velocities and Correlations of Cold Dark Matter Halos, ApJ, 431, 559 https://doi.org/10.1086/174507
피인용 문헌
- Inhomogeneous cosmology with numerical relativity vol.95, pp.6, 2017, https://doi.org/10.1103/PhysRevD.95.064028
- The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function vol.425, pp.1, 2012, https://doi.org/10.1111/j.1365-2966.2012.21502.x
- The illustris simulation: Public data release vol.13, 2015, https://doi.org/10.1016/j.ascom.2015.09.003
- COSMOLOGICAL CONSTRAINTS FROM THE REDSHIFT DEPENDENCE OF THE ALCOCK-PACZYNSKI TEST: GALAXY DENSITY GRADIENT FIELD vol.796, pp.2, 2014, https://doi.org/10.1088/0004-637X/796/2/137
- Effects of the initial conditions on cosmological N-body simulations vol.30, 2014, https://doi.org/10.1016/j.newast.2014.01.007
- Growth of cosmic structure: Probing dark energy beyond expansion vol.63, 2015, https://doi.org/10.1016/j.astropartphys.2014.07.004
- A TOPOLOGICAL ANALYSIS OF LARGE-SCALE STRUCTURE, STUDIED USING THE CMASS SAMPLE OF SDSS-III vol.796, pp.2, 2014, https://doi.org/10.1088/0004-637X/796/2/86
- Renormalization-group flow of the effective action of cosmological large-scale structures vol.2017, pp.01, 2017, https://doi.org/10.1088/1475-7516/2017/01/048
- SYSTEMATIC EFFECTS ON THE GENUS TOPOLOGY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE vol.212, pp.2, 2014, https://doi.org/10.1088/0067-0049/212/2/22
- The cosmological principle is not in the sky vol.469, pp.2, 2017, https://doi.org/10.1093/mnras/stx988
- EFFECTS OF LARGE-SCALE ENVIRONMENT ON THE ASSEMBLY HISTORY OF CENTRAL GALAXIES vol.794, pp.1, 2014, https://doi.org/10.1088/0004-637X/794/1/74
- COSMOLOGICAL CONSTRAINTS FROM THE REDSHIFT DEPENDENCE OF THE ALCOCK–PACZYNSKI EFFECT: APPLICATION TO THE SDSS-III BOSS DR12 GALAXIES vol.832, pp.2, 2016, https://doi.org/10.3847/0004-637X/832/2/103
- Constraining the halo mass function with observations vol.463, pp.2, 2016, https://doi.org/10.1093/mnras/stw2072
- Unusual A2142 supercluster with a collapsing core: distribution of light and mass vol.580, 2015, https://doi.org/10.1051/0004-6361/201526399
- Residual foreground contamination in the WMAP data and bias in non-Gaussianity estimation vol.2013, pp.02, 2013, https://doi.org/10.1088/1475-7516/2013/02/031
- Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation vol.2016, pp.07, 2016, https://doi.org/10.1088/1475-7516/2016/07/028
- TOPOLOGY OF LUMINOUS RED GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY vol.209, pp.2, 2013, https://doi.org/10.1088/0067-0049/209/2/19
- Cosmology with peculiar velocities: observational effects vol.463, pp.4, 2016, https://doi.org/10.1093/mnras/stw2252
- Edgeworth streaming model for redshift space distortions vol.92, pp.6, 2015, https://doi.org/10.1103/PhysRevD.92.063004
- Using the topology of large-scale structure in the WiggleZ Dark Energy Survey as a cosmological standard ruler vol.437, pp.3, 2014, https://doi.org/10.1093/mnras/stt2062
- Galaxy and mass assembly: Redshift space distortions from the clipped galaxy field vol.93, pp.2, 2016, https://doi.org/10.1103/PhysRevD.93.023525
- Halo shapes, initial shear field, and cosmic web vol.484, 2014, https://doi.org/10.1088/1742-6596/484/1/012049
- Numerical simulations of the dark universe: State of the art and the next decade vol.1, pp.1-2, 2012, https://doi.org/10.1016/j.dark.2012.10.002
- HECTOMAP AND HORIZON RUN 4: DENSE STRUCTURES AND VOIDS IN THE REAL AND SIMULATED UNIVERSE vol.818, pp.2, 2016, https://doi.org/10.3847/0004-637X/818/2/173
- THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY vol.759, pp.1, 2012, https://doi.org/10.1088/2041-8205/759/1/L7
- Systematic treatment of non-linear effects in Baryon Acoustic Oscillations vol.125, 2016, https://doi.org/10.1051/epjconf/201612503006
- The Copernicus Complexio: a high-resolution view of the small-scale Universe vol.457, pp.4, 2016, https://doi.org/10.1093/mnras/stw214
- SEMI-ANALYTIC GALAXY EVOLUTION (SAGE): MODEL CALIBRATION AND BASIC RESULTS vol.222, pp.2, 2016, https://doi.org/10.3847/0067-0049/222/2/22
- HORIZON RUN 3: TOPOLOGY AS A STANDARD RULER vol.799, pp.2, 2015, https://doi.org/10.1088/0004-637X/799/2/176
- Cosmological constraints from the redshift dependence of the Alcock–Paczynski test and volume effect: galaxy two-point correlation function vol.450, pp.1, 2015, https://doi.org/10.1093/mnras/stv622
- ON PHYSICAL SCALES OF DARK MATTER HALOS vol.792, pp.2, 2014, https://doi.org/10.1088/0004-637X/792/2/124
- Effective description of dark matter as a viscous fluid vol.125, 2016, https://doi.org/10.1051/epjconf/201612503018
- Cosmological perturbation theory at three-loop order vol.2014, pp.01, 2014, https://doi.org/10.1088/1475-7516/2014/01/010
- A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs vol.452, pp.3, 2015, https://doi.org/10.1093/mnras/stv1421
- Gaussian streaming with the truncated Zel’dovich approximation vol.94, pp.12, 2016, https://doi.org/10.1103/PhysRevD.94.123522
- New Fitting Formula for Cosmic Nonlinear Density Distribution vol.843, pp.1, 2017, https://doi.org/10.3847/1538-4357/aa74b9
- EUNHA: A NEW COSMOLOGICAL HYDRODYNAMIC SIMULATION CODE vol.47, pp.3, 2014, https://doi.org/10.5303/JKAS.2014.47.3.87
- Cosmological post-Newtonian equations from nonlinear perturbation theory vol.2013, pp.08, 2013, https://doi.org/10.1088/1475-7516/2013/08/040
- Hunting down systematics in baryon acoustic oscillations after cosmic high noon vol.458, pp.1, 2016, https://doi.org/10.1093/mnras/stw312
- ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method vol.459, pp.3, 2016, https://doi.org/10.1093/mnras/stw797
- Quantifying the Cosmic Web using the Shapefinder diagonistic vol.11, pp.S308, 2014, https://doi.org/10.1017/S1743921316009960
- ASYMMETRIC ABSORPTION PROFILES OF Lyα AND Lyβ IN DAMPED Lyα SYSTEMS vol.772, pp.2, 2013, https://doi.org/10.1088/0004-637X/772/2/123
- N-body methods for relativistic cosmology vol.31, pp.23, 2014, https://doi.org/10.1088/0264-9381/31/23/234006
- Large scale structure from viscous dark matter vol.2015, pp.11, 2015, https://doi.org/10.1088/1475-7516/2015/11/049
- Scaling relations for galaxy clusters in the Millennium-XXL simulation vol.426, pp.3, 2012, https://doi.org/10.1111/j.1365-2966.2012.21830.x
- Cosmological Parameter Estimation Using the Genus Amplitude—Application to Mock Galaxy Catalogs vol.853, pp.1, 2018, https://doi.org/10.3847/1538-4357/aaa24f
- Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement vol.477, pp.1, 2018, https://doi.org/10.1093/mnras/sty673