Abstract
Multiple ground rods are commonly used to obtain the low ground impedance, but they will not reduce the ground impedance unless the spacings between the ground rods are sufficient. This paper presents the experimental results of frequency-dependent resultant ground impedance of two ground rods in parallel. The resultant ground impedance of two ground rods in parallel were measured as functions of the spacing and length of ground rods and the frequency of test currents and were discussed based on the potential interferences. As a consequence, the frequency-dependent ground impedance of single ground rod and two combined ground rods give capacitive. It was found that the effect of potential interference on the ground impedance is directly associated with the frequency-dependent ground impedance and is strong in low frequency. Also, in order to reduce the increasing rate of resultant ground impedance of two ground rods due to potential interference to within 10(%), two ground rods in parallel will be placed over one rod length apart.