DOI QR코드

DOI QR Code

Robust Image Fusion Using Stationary Wavelet Transform

정상 웨이블렛 변환을 이용한 로버스트 영상 융합

  • Received : 20110800
  • Accepted : 20111000
  • Published : 2011.12.31

Abstract

Image fusion is the process of combining information from two or more source images of a scene into a single composite image with application to many fields, such as remote sensing, computer vision, robotics, medical imaging and defense. The most common wavelet-based fusion is discrete wavelet transform fusion in which the high frequency sub-bands and low frequency sub-bands are combined on activity measures of local windows such standard deviation and mean, respectively. However, discrete wavelet transform is not translation-invariant and it often yields block artifacts in a fused image. In this paper, we propose a robust image fusion based on the stationary wavelet transform to overcome the drawback of discrete wavelet transform. We use the activity measure of interquartile range as the robust estimator of variance in high frequency sub-bands and combine the low frequency sub-band based on the interquartile range information present in the high frequency sub-bands. We evaluate our proposed method quantitatively and qualitatively for image fusion, and compare it to some existing fusion methods. Experimental results indicate that the proposed method is more effective and can provide satisfactory fusion results.

영상 융합은 특징이 다른 두 개 이상의 영상에 대하여 각 영상의 특징을 모두 갖는 하나의 영상으로 재구성하는 기술로 의료 분야, 군사 분야, 원격 탐사 분야 등 여러 분야에 활용되고 있다. 지금까지 웨이블렛 기반 영상 융합은 주로 이산 웨이블렛 변환 하에서 고주파 영역에서는 표준편차와 같은 액티비티(activity) 측도를 사용하고 저주파 영역에서는 두 영상의 픽셀값의 평균을 취함으로써 이루어져 왔다. 그러나, 이산 웨이블렛 변환은 이동불변(translation-invariance)하지 않으므로 융합 영상에 블록 인공물이 생기곤 한다. 본 논문에서는 이산 웨이블렛 변환의 단점을 보완한 정상 웨이블렛 변환을 이용하여 고주파 영역에서는 영상 특징에 민감하지 않은 사분위수 범위를 사용하고 저주파 영역에서는 고주파 영역의 사분위수 범위 정보를 이용하여 영상을 융합하고자 한다. 영상 실험 결과, 제안된 방법은 정성적이고 정량적인 평가에서 입력 영상의 종류에 관계없이 로버스트한 결과를 낳음을 알 수 있었다.

Keywords

References

  1. Arivazhagan, S., Ganesan, L. and Subash Kumar, T. G. (2009). A modified statistical approach for image fusion using wavelet transform, Signal, Image and Video Processing, 3, 137-144. https://doi.org/10.1007/s11760-008-0065-4
  2. Aslantas, V. and Kurban, R. (2009). A comparison of criterion functions for fusion of multi-focus noisy images, Optics Communications, 282, 3231-3242. https://doi.org/10.1016/j.optcom.2009.05.021
  3. Fowler, J. E. (2005). The redundant discrete wavelet transform and additive noise, IEEE Signal Processing Letters, 12, 629-632. https://doi.org/10.1109/LSP.2005.853048
  4. Fridman, P. A. (2008). Statistically stable estimates of variance in radio-astronomy observations as tools for radio-frequency interference mitigation, The Astronomical Journal, 135, 1810-1824. https://doi.org/10.1088/0004-6256/135/5/1810
  5. Ganzalo, P. and Jesus, M. (2004). Wavelet-based image fusion tutorial, Pattern Recognition, 8, 1855-1872.
  6. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on In uence Functions, Wiley, New York.
  7. Li, H., Manunath, B. S. and Mitra, S. K. (1995). Multisensor image fusion using the wavelet transform, Graphical Models and Image Processing, 57, 235-245. https://doi.org/10.1006/gmip.1995.1022
  8. Li, X., He, M. and Roux, M. (2008). Multifocus image fusion based on redundant wavelet transform, IET Image Processing, 4, 283-293.
  9. Ma, H., Jia, C. and Liu, S. (2005). Multisource image fusion based on wavelet transform, International Journal of Information Technology, 11, 81-91.
  10. Park, M. J., Kwon, M. J., Kim, G. H., Shim, H. S. and Lim, D. H. (2011). Image fusion based on statistical hypothesis test using wavelet transform, The Korean Journal of Applied Statistics, 24, 695-708. https://doi.org/10.5351/KJAS.2011.24.4.695
  11. Rousseeuw, P. J. and Croux, C. (1993). Alternatives to the median absolute deviation, Journal of the American Statistical Association, 88, 1273-1283. https://doi.org/10.2307/2291267
  12. Samworth, R. J. and Wand, M. P. (2010). Asymptotics and optimal bandwidth selection for highest density region estimation, Annals of Statistics, 38, 1767-1792. https://doi.org/10.1214/09-AOS766
  13. Sasikala, M. and Kumaravel, N. (2007). A comparative analysis of feature based image fusion methods, Information Technology Journal, 6, 1224-1230. https://doi.org/10.3923/itj.2007.1224.1230
  14. Shensa, M. J. (1992). The discrete wavelet transform: Wedding the a trous and mallat algorithm, IEEE Transaction on Signal Processing, 40, 2464-2482. https://doi.org/10.1109/78.157290
  15. Starck, J. L. and Murtagh, F. (1994). Image restoration with noise suppression using the wavelet transform, Astronomy and Astrophysics, 288, 342-348.
  16. Yang, Y. (2011). Multiresolution image fusion based on wavelet transform by using a novel technique for selection coefficients, Journal of Multimedia, 6, 91-98.
  17. Zhang, Z. and Blum, R. S. (1999). A categorization of multiscale decomposition-based image fusion schemes with a performance study for a digital camera application, Proceedings of the IEEE, 87, 1315-1326. https://doi.org/10.1109/5.775414
  18. Zhao, R. Z., Xu, L. and Song, G. X. (2002). Multiscale image data fusion with wavelet transform, Journal of Computer-Aided Design & Computer Graphics, 14, 361-364.