References
- Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Bordrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T. Jr. J. H., Lu, L., Lwis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brouwn, P. O. and Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403, 503-511. https://doi.org/10.1038/35000501
- Dudoit, S., Fridlyand, J. and Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97, 77-87. https://doi.org/10.1198/016214502753479248
- Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, K. P., Coller, H., Loh, M., Downing, J. R., Caligiuri, M. A., Bloomeld, C. D. and Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531-537. https://doi.org/10.1126/science.286.5439.531
- Guyon, I., Weston, J. and Barnhill, S. (2002). Gene selection for cancer classification using support vector machines, Machine Learning, 46, 389-422. https://doi.org/10.1023/A:1012487302797
- Khan, J., Wei, J., Ringner, M., Saal, L., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C., Peterson, C. and Meltzer, P. S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, 7, 673-679. https://doi.org/10.1038/89044
- Kim, H., Golub, G. H. and Park, H. (2005). Missing value estimation for DNA microarray gene expression data: Local least squares imputation, Bioinformatics, 21, 187-198. https://doi.org/10.1093/bioinformatics/bth499
- Lee, J. W., Lee, J. B., Park, M. and Song, S. H. (2005). An extensive comparison of recent classification tools applied to microarray data, Computational Statistics and Data Analysis, 48, 869-885. https://doi.org/10.1016/j.csda.2004.03.017
- Liew, A. W., Law, N. and Yan, H. (2010). Missing value imputation for gene expression data: computational techniques to recover missing data from available information, Briefings in Bioinformatics, 12, 498-513.
- Liu, X., Krishnan, A. and Mondry, A. (2005). An entropy-based gene selection method for cancer classification using microarray data, BMC Bioinformatics, 6, 76. https://doi.org/10.1186/1471-2105-6-76
- Nguyen, D. V., Wang, N. and Carroll, R. J. (2004). Evaluation of missing value estimation for microarray data, Journal of Data Science, 2, 347-370.
- Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K. and Ishii, S. (2003). A Bayesian missing value estimation method for gene expression profile data, Bioinformatics, 19, 2088-2096. https://doi.org/10.1093/bioinformatics/btg287
- Scheel, I., Aldrin, M., Glad, I. K., Sorum, R., Lyng, H. and Frigessi, A. (2005). The influence of missing value imputation on detection of differentially expressed genes from microarray data, Bioinformatics, 21, 4272-4279. https://doi.org/10.1093/bioinformatics/bti708
- Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences, 99, 6567-6572. https://doi.org/10.1073/pnas.082099299
- Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525. https://doi.org/10.1093/bioinformatics/17.6.520