DOI QR코드

DOI QR Code

A Case Study on the Risk of Stepdown ELS

스텝다운형 주가연계증권의 위험률 고찰

  • Kim, Hee-Sun (Department of Statistics, Sookmyoung Women's University) ;
  • Yeo, In-Kwon (Department of Statistics, Sookmyoung Women's University)
  • 김희선 (숙명여자대학교 통계학과) ;
  • 여인권 (숙명여자대학교 통계학과)
  • Received : 20110800
  • Accepted : 20111100
  • Published : 2011.12.31

Abstract

Equity linked securities are indirect investments where the return of investment depends on the performance of the underlying equities. In this paper, we review the profit structure of typical equity linked securities through a profit diagram and investigate which characteristics of time series at the investment affect the early repayment of the stepdown ELS based on KOSPI 200 and HSI. We also compare VaRs using the empirical distribution function for risk management.

주가연계증권(ELS)은 주가와 연동되어 수익률이 결정되는 금융상품으로 현재 증권회사뿐만 아니라 은행에서도 많이 판매되고 있는 간접투자상품이다. 이 논문에서는 수익다이어그램을 통해 대표적인 주가연계증권의 수익구조를 알아보며 특히 현재 가장 많이 판매되고 있는 원금비보장 상품인 스텝다운형에 관심을 가진다. KOSPI 200과 홍콩 HSI를 기초자산으로 설정한 스텝다운형 상품에서 투자시점의 시계열 특성에 따른 조기상환여부와 경험적 분포를 이용한 VaR를 통한 위험률에 대해 고찰해 본다.

Keywords

References

  1. 구본일, 엄영호, 지현준 (2006). 확률적 이자율 모형 하에서의 베리어 옵션 가격결정, 재무연구, 19, 155-186.
  2. 김종윤 (2007). 국내 주가연계증권(ELS)의 현황 및 기초자산 분석.
  3. 박준영, 현종석 (2009). 거래비용을 고려하여 주가연계증권을 헤지할 때 발생하는 비용과 위험의 상쇄효과에 대한 시뮬레이션 연구: 조기상환구조 상품을 중심으로, 선물연구, 17, 1-47.
  4. Broadie, M., Glasserman, P. and Kou, S. G. (1997). A continuity correction for the discrete barrier options, Mathematical Finance, 7, 325-349. https://doi.org/10.1111/1467-9965.00035
  5. Carr, P. (1995). Two extensions to barrier option valuation, Applied Mathematical Finance, 2, 173-209. https://doi.org/10.1080/13504869500000010
  6. Gao, B., Huang, J. and Subrahmanyam, M. G. (2000). The valuation of American barrier options using the decomposition technique, Journal of Economic Dynamics & Control, 24, 1783-1827. https://doi.org/10.1016/S0165-1889(99)00093-7
  7. Geman, H. and Yor, M. (1996). Pricing and hedging double-barrier options: A probabilistic approach, Mathematical Finance, 6, 365-378. https://doi.org/10.1111/j.1467-9965.1996.tb00122.x
  8. Heynen, R. and Kat, H. (1994). Partial barrier option, Journal of Financial Engineering, 3, 253-274.
  9. Kunitomo, N. and Ikeda, M. (1992). Pricing options with curved boundaries, Mathematical Finance, 2, 275-298. https://doi.org/10.1111/j.1467-9965.1992.tb00033.x
  10. Rich D. R. (1994). The mathematical foundations of barrier option-pricing theory, Advanced in Futures and Options Research, 7, 267-311.
  11. Rubinstein, M. and Reiner, E. (1991). Breaking down the barriers, Risk, 4, 28-35.