참고문헌
- 홍종선, 이원용 (2011). 정규혼합분포를 이용한 ROC 곡선연구, 응용통계연구, 24, 269-278. https://doi.org/10.5351/KJAS.2011.24.2.269
- 홍종선, 주재선, 최진수 (2010). 혼합분포에서의 최적분류점, 응용통계연구, 23, 13-28. https://doi.org/10.5351/KJAS.2010.23.1.013
- 홍종선, 최진수 (2009). ROC와 CAP 곡선에서의 최적분류점, <응용통계연구>, 22, 911-921. https://doi.org/10.5351/KJAS.2009.22.5.911
- Aitkin, M. and Wilson, T. G. (1980). Mixture models, outliers, and the EM algorithm, Technometrics, 22, 325-331. https://doi.org/10.2307/1268316
- Egan, J. P. (1975). Signal Detection Theory and ROC Analysis, Series in Cognitition and Perception, Academic Press, New York.
- Everitt, B. S. (1984). Maximum likelihood estimation of the parameters in a mixture of two univariate normal, Journal of the Royal Statistical Society, 33, 205-215.
- Fawcett, T. (2003). ROC graphs: Notes and practical considerations for data mining researchers, Technical Report HPL-2003-4, HP Laboratories, 1-28.
- Hall, P. G. and Hyndman, R. J. (2003). Improved methods for bandwidth selection when estimating ROC curves, Statistics and Probability Letters, 64, 181-189. https://doi.org/10.1016/S0167-7152(03)00150-0
- Joseph, M. P. (2005). A PD Validation Framework for Basel II Internal Ratings-Based Systems, Credit Scoring and Credit Control IV .
- Lloyd, C. J. (1998). The use of smoothed ROC curves to summarise and compare diagnostic systems, Journal of the American Statistical Association, 93, 1356-1364. https://doi.org/10.2307/2670051
- Lloyd, C. J. and Yong, Z. (1999). Kernel estimators of the ROC curve are better than empirical, Statistics and Probability Letters, 44, 221-228. https://doi.org/10.1016/S0167-7152(99)00012-7
- McCullagh, P. and Nelder, J. A. (1983). Quasi-likelihood functions, Annals of Statistics, 11, 59-67. https://doi.org/10.1214/aos/1176346056
- McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions, John Wiley & Sons, New York.
- Pepe, M. S. (1998). Three approaches to regression analysis of receiver operating characteristic curves for continuous test results, Biometrics, 54, 124-135. https://doi.org/10.2307/2534001
- Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classiffication and Prediction, University Press, Oxford, New York.
- Provost, F. and Fawcett, T. (1997). Analysis and visualization of classifier performance comparison under imprecise class and cost distributions, In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, 43-48.
- Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments, Machine Learning, 42, 203-231. https://doi.org/10.1023/A:1007601015854
- Rossenblatt, M. (1956). Remarks on some nonparametric estimates of a density function, Annals of Mathematical Statistics, 27, 832-837. https://doi.org/10.1214/aoms/1177728190
- Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.
- Swets, J. A. (1988). Measuring the accuracy of diagnostic systems, American Association for the Advancement of Science, 240, 1285-1293. https://doi.org/10.1126/science.3287615
- Swets, J. A., Dawes, R. M. and Monahan, J. (2000). Better decisions through science, Scientific Americal, 283, 82-87.
- Tasche, D. (2006). Validation of internal rating systems and PD Estimates, On-line bibliography available from: http://arXiv:physics/0606071.
- Zou, K. H., Hall, W. J. and Shapiro, D. E. (1997). Smooth non-parametric receiver operating characteristic(ROC) curves for continuous diagnostic tests, Statistics in Medicine, 16, 2143-2156. https://doi.org/10.1002/(SICI)1097-0258(19971015)16:19<2143::AID-SIM655>3.0.CO;2-3
피인용 문헌
- Alternative Optimal Threshold Criteria: MFR vol.27, pp.5, 2014, https://doi.org/10.5351/KJAS.2014.27.5.773