DOI QR코드

DOI QR Code

Efficient Estimation of the Parameters of the Pareto Distribution in the Presence of Outliers

  • Dixit, U.J. (Department of Statistics, University of Mumbai) ;
  • Jabbari Nooghabi, M. (Department of Statistics, University of Mumbai)
  • Received : 20110300
  • Accepted : 20110900
  • Published : 2011.11.30

Abstract

The moment(MM) and least squares(LS) estimations of the parameters are derived for the Pareto distribution in the presence of outliers. Further, we have derived a mixture method(MIX) of estimations with MM and LS that shows that the MIX is more efficient. In the final section we have given an example of actual data from a medical insurance company.

Keywords

References

  1. Abramowitz, M. and Stegun, A. I. (1970). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York.
  2. Asrabadi, B. R. (1990). Estimation in the Pareto distribution, Metrika, 37, 199-205. https://doi.org/10.1007/BF02613522
  3. Dixit, U. J. (1987). Characterization of the gamma distribution in the presence of k outliers, Bulletin Bombay Mathematical Colloquium, 4, 54-59.
  4. Dixit, U. J. (1989). Estimation of parameters of the Gamma Distribution in the presence of Outliers, Communications in Statistics - Theory and Methods, 18, 3071-3085. https://doi.org/10.1080/03610928908830078
  5. Dixit, U. J. and Jabbari Nooghabi, M. (2011). Efficient estimation in the Pareto distribution with the presence of outliers, Statistical Methodology, 8, 340-355. https://doi.org/10.1016/j.stamet.2011.01.011
  6. Dixit, U. J. and Nasiri, F. P. (2001). Estimation of parameters of the exponential distribution in the presence of outliers generated from uniform distribution, Metron LIX(3-4), 187-198.
  7. Hossain, A. M. and Zimmer, W. J. (2000). Comparisons of methods of estimation for a Pareto distri- bution of the first kind, Communications in Statistics - Theory and Methods, 29, 859-878. https://doi.org/10.1080/03610920008832520
  8. Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation, John Wiley & Sons, Second edition, New York.
  9. Malik, H. J. (1970). Estimation of the parameter of the Pareto distribution, Metrika, 15, 126-132. https://doi.org/10.1007/BF02613565
  10. Nadeau, T. P. and Teorey, T. J. (2003). A Pareto model for OLAP view size estimation, Information Systems Frontiers, 5, 137-147. https://doi.org/10.1023/A:1022693305401
  11. Pachner, J. (1984). Handbook of Numerical Analysis Applications with Programs for Engineers and Scientists, McGraw-Hill Inc., New York.
  12. Quandt, R. E. (1996). Old and new methods of estimation and the Pareto distribution, Metrika, 10, 55-82.
  13. Read, R. R. (1981). Representation of certain covariance matrices with application to asymptotic efficiency, Journal of the American Statistical Association, 76, 148-154. https://doi.org/10.2307/2287060

Cited by

  1. On entropy of a Pareto distribution in the presence of outliers vol.45, pp.17, 2016, https://doi.org/10.1080/03610926.2014.941495
  2. Comments on two papers concerning estimation of the parameters of the Pareto distribution in the presence of outliers vol.13, 2013, https://doi.org/10.1016/j.stamet.2012.12.002
  3. A Pareto scale-inflated outlier model and its Bayesian analysis vol.2015, pp.3, 2015, https://doi.org/10.1080/03461238.2013.807469
  4. On the identification of extreme outliers and dragon-kings mechanisms in the upper tail of income distribution pp.1360-0532, 2019, https://doi.org/10.1080/02664763.2019.1566447