DOI QR코드

DOI QR Code

Semi-parametric Bootstrap Confidence Intervals for High-Quantiles of Heavy-Tailed Distributions

꼬리가 두꺼운 분포의 고분위수에 대한 준모수적 붓스트랩 신뢰구간

  • Kim, Ji-Hyun (Department of Statistics and Actuarial Science, Soongsil University)
  • 김지현 (숭실대학교 정보통계보험수리학과)
  • Received : 20110800
  • Accepted : 20111000
  • Published : 2011.11.30

Abstract

We consider bootstrap confidence intervals for high quantiles of heavy-tailed distribution. A semi-parametric method is compared with the non-parametric and the parametric method through simulation study.

꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간을 구할 때 적절한 붓스트랩 방법은 무엇인가에 대해 알아보았다. 비모수적 방법과 모수적 방법, 그리고 준모수적 방법의 성능을 모의실험을 통해 비교하였다.

Keywords

References

  1. Athreya, K. B. (1987). Bootstrap of the mean in the infinite variance case, The Annals of Statistics, 15, 724-731. https://doi.org/10.1214/aos/1176350371
  2. Begueria, S. (2005). Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value, Journal of Hydrology, 303, 215-230. https://doi.org/10.1016/j.jhydrol.2004.07.015
  3. Davidson, R. and Flachaire, E. (2007). Asymptotic and bootstrap inference for inequality and poverty measures, Journal of Economics, 141, 141-166. https://doi.org/10.1016/j.jeconom.2007.01.009
  4. Efron, B. (1987). Better bootstrap confidence intervals. (with discussion.), Journal of American Statistical Association, 82, 171-200. https://doi.org/10.2307/2289144
  5. Hall, P. and Jing, B. (1998). Comparison of bootstrap and asymptotic approximations to the distribution of a heavy-tailed mean, Statistica Sinica, 8, 887-906.
  6. Kysely, J. (2010). Coverage probability of bootstrap confidence intervals in heavy-tailed frequency models, with application to precipitation data, Theoretical and Applied Climatology, 101, 345-361. https://doi.org/10.1007/s00704-009-0190-1
  7. McNeil, A. (2007). For S-Plus original; R port by Scott Ulman, QRMlib R package version 1.4.2. http://www.ma.hw.ac.uk/-mcneil/book/index.html.
  8. McNeil, A. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach, Journal of Empirical Finance, 7, 271-300. https://doi.org/10.1016/S0927-5398(00)00012-8
  9. McNeil, A., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management, Princeton University Press.
  10. McNeil, A. and Saladin, T. (1997). The peaks over thresholds method for estimating high quantiles of loss distributions, Proceedings of 28th International ASTIN Colloquium.
  11. Pickands, J. (1975). Statistical inference using extreme order statistics, Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003
  12. R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Cited by

  1. Estimating the Transmittable Prevalence of Infectious Diseases Using a Back-Calculation Approach vol.21, pp.6, 2014, https://doi.org/10.5351/CSAM.2014.21.6.487
  2. Confidence Intervals for High Quantiles of Heavy-Tailed Distributions vol.27, pp.3, 2014, https://doi.org/10.5351/KJAS.2014.27.3.461