DOI QR코드

DOI QR Code

Minimum Energy Per Bit by Power Model in the Wireless Transceiver System

무선 통신 시스템의 전력 모델을 이용한 비트당 최소 에너지

  • Choi, Jae-Hoon (Department of Electronic Engineering, Chungbuk National University) ;
  • Jo, Byung-Gak (Department of Electronic Engineering, Chungbuk National University) ;
  • Baek, Gwang-Hoon (Department of Electronic Engineering, Chungbuk National University) ;
  • Ryu, Heung-Gyoon (Department of Electronic Engineering, Chungbuk National University)
  • Published : 2011.12.31

Abstract

In this paper, we analyze the relationship between energy per bit and the data rate with the variation of the system bandwidth. A existing power model is mathematical model to express power consumption of each device. In this paper, we have to investigate the system level energy model for the RF front-end of a wireless transceiver. Also, the effects of the signal bandwidth, PAR, date rate, modulation level, transmission distance, specific attenuation of frequency band, and the signal center frequency on the RF front-end energy consumption and system capacity are considered. Eventually, we analyze the relationship between energy per bit and the data rate with the variation of the system bandwidth so that we simulate the minimum energy per bit in the several Gbps data rate using Shannon capacity theory.

본 논문은 RF power model과 주파수 대역의 특성을 이용한 비트 당 에너지와 전송량과의 관계를 시스템 대역폭의 변화에 따라 분석한 논문이다. 기존에 제안된 RF power model은 각각의 디바이스의 소모 전력을 수식적으로 표현한 것이다. 이 전력 모델에 고려된 요소는 시스템의 전송 대역과 PAR, 데이터 전송량, 변조 레벨, 전송, 전송 거리 등이다. 본 논문에서는 이러한 영향을 고려하여 RF power model과 주파수 대역의 특성을 이용한 비트당 에너지와 전송량의 관계를 시스템 대역폭의 변화에 따라 분석하였다. Shannon capacity 공식과 신호의 SNR에 대한 식, 그리고 RF power model의 소모 전력을 이용하여 해당 주파수에서의 소모 전력을 구하고, Gbps급 데이터 속도에 따른 비트 당 에너지의 최소 값을 찾기 위한 시뮬레이션을 진행하였다.

Keywords

References

  1. D. K. Kim, H. S. Lee, "Phase-silence-shift-keying for power-efficient modulator", IEICE Trans. Communication., vol. E92-B, no. 6, Jun. 2009.
  2. J. Y. Oh, J. K. Kim, H. S. Lee, S. S. Choi, and D. S. Ha, "Phase rotation shift keying for low power and high performance WBAN in-body systems", in Proc. Information and Communication Technology Convertgence. ICTC 2010., Nov. 2010.
  3. J. H. Choi, H. G. Ryu, "A QAPM(Quadrature Amplitude Position Modulation) for low power consumption communication", Wireless Pervasive Computing, 2011 ISWPC'2011, Feb. 2011.
  4. R. Ramanathan, R. Rosales-Hain, "Topology control of multihop wireless networks using transmit power adjustment", in Proc. IEEE INFOCOM 2000., Mar. 2000.
  5. Weilan Huang, K. B Letaief, "Cross-layer scheduling and power control combined with adaptive modulation for wireless ad hoc networks" in Proc. Global Telecommunications Conference, GLOBECOM' 2005, Dec. 2005.
  6. Ye Li, Bertan Bakkaloglu, "A system level energy model and energy-quality evaluation for integrated transceiver front-ends", IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 15. no. 1, pp. 90-103, Jan. 2007. https://doi.org/10.1109/TVLSI.2007.891095
  7. Andrew Y. Wang, Charles G. Sodini, "On the energy efficiency of wireless transceivers", in Proc. IEEE ICC'2006, Jun. 2006.
  8. P. Wambacq, G. Vandersteen, and S. Donnay, et al., "Higher-level simulation and power modeling of mixed-signal front-ends for digital communications", in Proc. IEEE ICECS, pp. 525-528, 1999.
  9. G. Hanington, P. F. Chen, P. M, Asbeck, and L. E. Larson, "High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications", IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1471-1476, Aug. 1999. https://doi.org/10.1109/22.780397
  10. ITU-Rec. 676-1, "Attenuation by atmospheric gases in the frequency range 1-350 GHz", 1992.
  11. Xia Li, Peter Baltus, D. Milosevic, Wei Deng, P. Van Zeijl, N. Bird, and A. van Roermund, "Wireless wire-the 60 Ghz ultra-low power radio system", in Proc. Radio and Wireless Symposium. RWS' 2009, Jan. 2009.