DOI QR코드

DOI QR Code

Delay-dependent Stability Criteria for Fuzzy Markovian Jumping Hopfield Neural Networks of Neutral Type with Time-varying Delays

시변지연을 가진 뉴트럴 타입의 퍼지 마르코비안 점핑 홉필드 뉴럴 네트워크에 대한 지연의존 안정성 판별법

  • 박명진 (충북대학교 전기공학부) ;
  • 권오민 (충북대학교 전기공학부) ;
  • 박주현 (영남대학교 전기공학과) ;
  • 이상문 (대구대학교 전자공학부)
  • Received : 2010.10.11
  • Accepted : 2010.12.29
  • Published : 2011.02.01

Abstract

This paper proposes delay-dependent stability conditions of the fuzzy Markovian jumping Hopfield neural networks of neutral type with time-varying delays. By constructing a suitable Lyapunov-Krasovskii's (L-K) functional and utilizing Finsler's lemma, new delay-dependent stability criteria for the systems are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. A numerical example is given to illustrate the effectiveness of the proposed methods.

Keywords

References

  1. J.J. Hopfield, "Neural networks and physical systems with emergent collect computational abilities", Proc. Nat. Acad. Sci. USA, vol.79, pp.2554-2558, 1982. https://doi.org/10.1073/pnas.79.8.2554
  2. X. Lou, B. Cui, "New LMI conditions for delay-dependent asymptotic stability of delayed Hopfiled neural networks", Neurocomputing, vol.69, pp.2374-2378, 2006. https://doi.org/10.1016/j.neucom.2006.02.019
  3. S. Mou, H. Gao, J. Lam, W. Qiang, "A New Criterion of Delay-Dependent Asymptotic Stability for Hopfield Neural Networks With Time Delay", IEEE Trans. Neural Netw., vol.19, pp.532-535, 2008. https://doi.org/10.1109/TNN.2007.912593
  4. D. Yang, C. Hu, "Novel delay-dependent global asymptotic stability condition of Hopfield neural networks with delays", Comput. Math. Appl., vol.57, pp.1978-1984, 2009. https://doi.org/10.1016/j.camwa.2008.10.047
  5. Ju H. Park, O.M. Kwon, "Global stability for neural networks of neutral-type with interval time-varying delays", Chaos Solitons Fractals, vol.41, pp.1174-1181, 2009. https://doi.org/10.1016/j.chaos.2008.04.049
  6. X.-D. Zhao, Q.-S. Zeng, "Delay-dependent stability analysis for Markovian jump systems with interval time-varying delays", Int. J. Autom. Comput., vol.7, pp.224-229, 2010. https://doi.org/10.1007/s11633-010-0224-2
  7. X. Mao, "Exponential Stability of Stochastic Delay Interval Systems With Markovian Switching", IEEE Trans. Autom. Control, vol.47, pp.1604-1612, 2002. https://doi.org/10.1109/TAC.2002.803529
  8. Z. Fei, H. Gao, P. Shi, "New results on stabilization of Markovian jump systems with time delay", Automatica, vol.45, pp.2300-2306, 2009. https://doi.org/10.1016/j.automatica.2009.06.020
  9. H. Liu, L. Zhao, Z. Zhang, Y. Ou, "Stochastic stability of Markovian jumping Hopfield neural networks with constant and distributed delays", Neurocomputing, vol.72, pp.3669-3674, 2009. https://doi.org/10.1016/j.neucom.2009.07.003
  10. O.M. Kwon, Ju H. Park, S.M. Lee, "Delay-dependent Stability Criteria for Uncertain Stochastic Neural Networks with Interval Time-varying Delays", The Transactions of The Korean Institute of Elecetrical Engineers (KIEE), vol.57, pp.2066-2073, 2008.
  11. T. Takagi, M. Sugeno, "Fuzzy Identification of Systems and Its Applications to Modeling and Control", IEEE Trans. Syst. Man Cybern., vol.15, pp.116-132, 1985.
  12. B. Liu, P. Shi, "Delay-range-dependent stability for fuzzy BAM neural networks with time-varying delays", Phys. Lett. A, vol.373, pp.1830-1838, 2009. https://doi.org/10.1016/j.physleta.2009.03.044
  13. E. Tian, D. Yue, Y. Zhang, "Delay-dependent robust $H{\infty}$ control for T-S fuzzy system with interval time-varying delay", Fuzzy Sets Syst., vol.160, pp.1708-1719, 2009. https://doi.org/10.1016/j.fss.2008.10.014
  14. M.S. Ali, P. Balasubramaniam, "Stability analysis of uncertain fuzzy Hofield neural networks with time delay", Commun. Nonlinear Sci. Numer. Simmul., vol.14, pp.2776-2783, 2009. https://doi.org/10.1016/j.cnsns.2008.09.024
  15. P. Balasubramaniam, R. Rakkiyappan, R. Sathy, "Delay dependent stability results for fuzzy BAM neural networks with Markovian jumping parameters", Expert Syst. Appl., vol.38, pp.121-130, 2011. https://doi.org/10.1016/j.eswa.2010.06.025
  16. B. Oksendal. Stochastic Differential Equations. Springer, Berlin, 2003.
  17. K. Gu, "An integral inequality in the stability problem of time-delay systems", in: The 39th IEEE Conf. Decision Control, Sydney, Australia, Dec. 2000, pp.2805-2810.
  18. M.C. de Oliveira, R.E. Skelton. Stability tests for constrained linear systems. Springer, Berlin, 2001.
  19. S. Boyd, L.EI Ghaoui and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, 1994.