DOI QR코드

DOI QR Code

Incidence and Spectrum of Chromosomal Abnormalities associated with Spontaneous Abortions in Korea: 470 Products of Conception over a Period of 6 Years (2005-2010)

국내 자연유산에 의한 수태산물 핵형분석에서 관찰된 염색체 이상의 발생율과 유형: 6년(2005-2010)간 수태산물 470예 분석

  • Han, Sung-Hee (Division of Cytogenetics, Department of Laboratory Medicine, Seoul Clinical Laboratories) ;
  • An, Jeong-Wook (Division of Cytogenetics, Department of Laboratory Medicine, Seoul Clinical Laboratories) ;
  • Yang, Young-Ho (Division of Cytogenetics, Department of Laboratory Medicine, Seoul Clinical Laboratories) ;
  • Kim, Young-Jin (Division of Cytogenetics, Department of Laboratory Medicine, Seoul Clinical Laboratories) ;
  • Cho, Han-Ik (Division of Cytogenetics, Department of Laboratory Medicine, Seoul Clinical Laboratories) ;
  • Lee, Kyoung-Ryul (Division of Cytogenetics, Department of Laboratory Medicine, Seoul Clinical Laboratories)
  • 한성희 (서울의과학연구소 세포유전학팀) ;
  • 안정욱 (서울의과학연구소 세포유전학팀) ;
  • 양영호 (서울의과학연구소 세포유전학팀) ;
  • 김영진 (서울의과학연구소 세포유전학팀) ;
  • 조한익 (서울의과학연구소 세포유전학팀) ;
  • 이경률 (서울의과학연구소 세포유전학팀)
  • Received : 2011.05.19
  • Accepted : 2011.06.10
  • Published : 2011.03.01

Abstract

Purpose: Cytogenetic analysis of spontaneous abortions (SABs) provides valuable information to establish the causes of fetal loss, information that is essential to provide accurate reproductive and genetic counseling couples. Such analysis also provides information on the frequencies and types of chromosomal abnormalities and associated risks of recurrence. However, there have only been a few reports of chromosomal abnormalities in small samples of SABs in the Korean population. Here, we report the incidence and spectrum of chromosomal abnormalities for cases of 470 SAB in Korea. Material and Methods: Between 2005 and 2010, a total of 470 products of conception (POC) resulting from SABs were submitted to our laboratory for cytogenetic analysis from various medical sites in Korea. The incidences and types of specific chromosomal abnormalities were determined. The abnormalities were distinguished by gestational age at the time of SAB and by maternal age. Results: The frequency of chromosomal abnormalities in POCs was 54.3% (255/470), including 228 (89.3%) numerical and 27 (10.7%: 3 balanced and 24 unbalanced) structural abnormalities. Among the numerical abnormalities, trisomy was predominant (67.0%), followed by monosomy X (12.5%), polyploidy (8.2%), triple X (0.8%), and autosomal monosomy (0.8%). The overall sex ratio (male: female) among the 470 POCs with normal and abnormal karyotypes were 0.58 and 0.65, respectively. Trisomies were identified for each autosome, with the exceptions of 1, 3, and 19. Among the 171 autosomal trisomies, trisomy 16 was the most common (19.9%), followed by trisomy 22 (13.5%), trisomy 21 (12.3 %), trisomy 15 (9.9%), and trisomies 18 and 13 (5.3%). The frequency of chromosomal abnormalities decreased with gestational age and increased with maternal age, but only because of increases in trisomies and complex abnormalities. Conclusions: We have presented a large collection of cytogenetic data for SABs collected during the past 6 years and provided a database for prenatal genetic counseling of parents who have experienced SABs in Korea.

목적: 자연 유산에 대한 세포유전학적 분석은 유산의 원인을 규명하여 부모에게 정확한 유전상담을 위한 귀중한 정보를 제공한다. 또한 그 분석결과를 통해 염색체 이상의 빈도와 유형을 알 수 있으며 그에 따른 재발 위험도를 산정할 수 있다. 하지만 아직까지 한국인에서는 자연유산에서 관찰되는 염색체 이상에 대해 몇몇의 보고들이 있으나 그 대상군의 수가 적다. 이에 저자들은 자연유산에 의한 수태산물 470예에서 관찰되는 염색체 이상의 발생 빈도와 종류에 대해 보고하고자 한다. 대상 및 방법: 2005년부터 2010년까지 국내 병원이나 개인 산부인과에서 서울의과학연구소에 염색체 분석이 의뢰된 자연유산에 의한 수태산물 470예를 대상으로 염색체 핵형 결과와 함께 유산시 임신 주수와 산모나이에 따른 염색체 이상의 종류와 발생빈도를 분석하였다. 결과: 총 470예의 자연 유산에 의한 수태산물의 염색체 핵형을 분석한 결과 염색체 이상 빈도는 54.3% (255/470)였다. 그 중 수적 이상이 89.3% (228/470)로 대부분을 차지하였는데, 수적 이상 중에는 상염색체의 삼염색체가 67.0%였고, 단일염색체 X가 12.5%, 다배수성은 8.2%, 삼염색체X가 0.8%, 상염색체의 단일염색체가 0.8%였다. 구조적 이상은 10.7% (27/470)으로 균형전좌가 3예, 불균형전좌는 24예이었다. 남녀 성비는 정상핵형과 비정상핵형 모두 0.58과 0.65으로 여아에서 높게 나타났다. 상염색체의 삼염색체는 1번, 3번, 19번 염색체를 제외하고 모두 관찰되었는데, 16번 삼염색체가 19.9%로 가장 많았으며, 22번 염색체가 13.5%, 21번 염색체가 12.3%, 15번 염색체가 9.9%, 13번과 18번 염색체가 각각5.3% 순으로 관찰되었다. 염색체 이상의 빈도는 임신 주수가 낮을수록, 산모나이가 많을수록 높았는데, 산모나이가 많을수록 삼염색체와 수적이상과 구조적 이상이 같이 있는 염색체 이상의 빈도가 높았다. 결론: 본 연구는 최근 6년간의 자연유산에 의한 수태산물 470예에 대해 세포유전학적 결과를 분석하였고, 이는 국내 자연유산 환자에게 적절한 산전유전상담을 위한 기초자료로서 유용할 것으로 생각된다.

Keywords

References

  1. Harlap S, Shiono PH. Alcohol, smoking, and incidence of spontaneous abortions in the first and second trimester. Lancet 1980;2:173-6.
  2. Pezeshki K, Feldman J, Stein DE, Lobel SM, Grazi RV. Bleeding and spontaneous abortion after therapy for infertility. Fertil Steril 2000;74:504-8. https://doi.org/10.1016/S0015-0282(00)00707-X
  3. Rock JA, Zacur HA. The clinical management of repeated early pregnancy wastage. Fertil Steril 1983;39:123-40. https://doi.org/10.1016/S0015-0282(16)46809-3
  4. Simpson JL. Genes, chromosomes, and reproductive failure. Fertil Steril 1980;33:107-16. https://doi.org/10.1016/S0015-0282(16)44528-0
  5. De la Chapelle A, Schro der J, Kokkonen J. Cytogenetics of recurrent abortion or unsuccessful pregnancy. Int J Fertil 1973;18:215-9.
  6. Hassold TJ, Jacobs PA. Trisomy in man. Annu Rev Genet 1984;18:69-97. https://doi.org/10.1146/annurev.ge.18.120184.000441
  7. Morton NE, Chiu D, Holland C, Jacobs PA, Pettay D. Chromosome anomalies as predictors of recurrence risk for spontaneous abortion. Am J Med Genet 1987;28:353-60. https://doi.org/10.1002/ajmg.1320280213
  8. Warburton D. Genetic factors influencing aneuploidy frequency. Basic Life Sci 1985;36:133-48.
  9. Yamamoto M, Ito T, Watanabe M, Watanabe G. Causes of chromosome anomalies suggested by cytogenetic epidemiology of induced abortions. Hum Genet 1982;60:360-4. https://doi.org/10.1007/BF00569219
  10. Bowen P, Lee CS. Spontaneous abortion. Chromosome studies on 41 cases and an analysis of maternal age and duration of pregnancy in relation to karyotype. Am J Obstet Gynecol 1969;104:973-83. https://doi.org/10.1016/0002-9378(69)90688-7
  11. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-y ear study. Genet Med 2005;7:251-63. https://doi.org/10.1097/01.GIM.0000160075.96707.04
  12. Eiben B, Bartels I, Bahr-Porsch S, Borgmann S, Gatz G, Gellert G, et al. Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet 1990;47:656-63.
  13. Simoni G, Brambati B, Danesino C, Rossella F, Terzoli GL, Ferrari M, et al. Efficient direct chromosome analyses and enzyme determinations from chorionic villi samples in the first trimester of pregnancy. Hum Genet 1983;63:349-57. https://doi.org/10.1007/BF00274761
  14. Yang YH, Park YW, Lee MS, Park CK. Chromosome analysis of chorionic villi biopsy in the first trimester prenatal diagnosis. Kor J Obstet Gynecol 1985;28:460-7.
  15. Choi SK, Park SY, Hwang JH, Ryu HM, Jun JY. Cytogenetic studies from chorionic villi of 573 spontanous abortion. Kor J Obstet Gynecol 1995;38:2271-7.
  16. Kim KY, Yun DJ, Yang JS, Hahn S. Cytogenetic analysis of conceptus material of Korean women at first trimester. Yonsei Med J 1979;20:113-26. https://doi.org/10.3349/ymj.1979.20.2.113
  17. Lee YB, Kang KI, An KJ, Lee SJ, Jeon JS. Chromosome analyses from chorionic villi samples in early pregnancy wastages. Kor J Perinatol 1988;31:879-88.
  18. Jin SJ, Seo SS, Kim KS, Kim NK, Kim JD. A cytogenetic study of abortuses with recurrent spontaneous abortion. Kor J Perinatol 1994;37:2328-34.
  19. Yoo TW, Hwang JH, Park MI, Chung SR, Hwang YY, Shin SH, at al. Chromosome analysis from chorionic villi samples in recurrent spontaneous abortion. Kor J Perinatol 1997;18:408-13.
  20. Choi YY, Kim HM, Son YS, Kim JI. Chromosomal analysis of abortus chorionic villi in missed abortion. Kor J Obstet Gynecol 1998;41:2097-101.
  21. Kim JS, Choung TB, Park JW, Kim JR, Kang JB, Kim HB, et al. Cytogenetic study of abortuses with spontaneous abortion. Kor J Obstet Gynecol 1999;42:1408-15.
  22. Ko HS, Kim YH, Ahn HY, Park IY, Lee Y, Kim SJ, et al. Cytogenetic analysis in spontaneous abortion. Kor J Perinatol 2005;8-14.
  23. Hwang SM, Kwon KH, Yoon KA, Oh SK. A cytogenetic analysis of abortus with spontaneous abortion. J Genet Med 2009:6;62-6.
  24. Jamieson ME, Coutts JRT, Connor JM. The chromosome constiturtion of human preimplantation embryos fertilized in vitro. Hum Reprod 1994;9:709-15. https://doi.org/10.1093/oxfordjournals.humrep.a138575
  25. Sanchez JM, Franzi L, Collia F, De Diaz SL, Panal M, Dubner M. Cytogenetic study of spontaneous abortions by transabdominal villus sampling and direct analysis of villi. Prenat Diagn 1999;19:601-3. https://doi.org/10.1002/(SICI)1097-0223(199907)19:7<601::AID-PD564>3.0.CO;2-0
  26. Nagaishi M, Yamamoto T, Iinuma K, Shimomura K, Berend SA, Knops J. Chromosome abnormalities identified in 347 spontaneous abortions collected in Japan. J Obstet Gynaecol Res 2004;30:237-41. https://doi.org/10.1111/j.1447-0756.2004.00191.x
  27. Kajii T, Ferrier A, Niikawa N, Takahara H, Ohama K, Avirachan S. Anatomic and chromosomal anomalies in 639 spontaneous abortuses. Hum Genet 1980;55:87-98. https://doi.org/10.1007/BF00329132
  28. Hassold T, Chen N, Funkhouser J, Jooss T, Manuel B, Matsuura J, et al. A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet 1980;44:151-78. https://doi.org/10.1111/j.1469-1809.1980.tb00955.x
  29. Hassold T, Abruzzo M, Adkins K, Griffin D, Merrill M, Millie E, et al. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen 1996;28:167-75. https://doi.org/10.1002/(SICI)1098-2280(1996)28:3<167::AID-EM2>3.0.CO;2-B
  30. Warburton D, Kinney A. Chromosomal differences in susceptibility to meiotic aneuploidy. Environ Mol Mutagen 1996;28:237-47. https://doi.org/10.1002/(SICI)1098-2280(1996)28:3<237::AID-EM7>3.0.CO;2-A
  31. Kalousek DK, Bamforth S. Amnion rupture sequence in previable fetuses. Am J Med Genet 1988;31:63-73. https://doi.org/10.1002/ajmg.1320310110
  32. Gardner RJM, Sutherland GR. Chromosome abnormalities and genetic counseling. 3rd ed. New York: Oxford University Press, 2004:59-97.
  33. Robinson WP, McFadden DE, Stephenson MD. The origin of abnormalities in recurrent aneuploidy/polyploidy. Am J Hum Genet 2001;69:1245-54. https://doi.org/10.1086/324468
  34. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2001;2:280-91. https://doi.org/10.1038/35066065
  35. Wells D, Levy B. Cytogenetics in reproductive medicine: the contribution of comparative genomic hybridization (CGH). Bioessays 2003;25:289-300. https://doi.org/10.1002/bies.10232