DOI QR코드

DOI QR Code

Resolution Enhancement for Far Objects by Using Direct Pixel Mapping Method in Curving-Effective Integral Imaging

커브형 집적영상에서 다이렉트 픽셀매핑 방법을 이용한 먼 거리 물체의 해상도 향상

  • 정한구 (광운대학교 전자공학과 홀로-디지로그 휴먼미디어 연구센터) ;
  • 김은수 (광운대학교 전자공학과 홀로-디지로그 휴먼미디어 연구센터)
  • Received : 2011.10.10
  • Accepted : 2011.10.17
  • Published : 2011.12.31

Abstract

We proposed a new method to improve the resolution of far object image in curving effective integral imaging system. Basically, the curving effective integral imaging(CEII) system can improve the resolution of the reconstructed images with an increased sampling rate of elemental images. However, in the case when an object located far from the lenslet array is picked up, the low resolution of the reconstructed images of the far object has been a primary problem because the sampling rate is very low. In order to solve this drawback, by using the direct pixel mapping(DPM) method the EIA picked up from a far object is transformed into a new EIA that virtually looks like the EIA picked up from the object originally located close to the lenslet array. From this new EIA, highly resolution-enhanced images of far object could be reconstructed in the CEII system. To show the feasibility of the proposed method, simulation results are compared with the conventional method.

본 논문에서는 커브형 집적영상 시스템에서 먼 거리 물체의 해상도를 향상하는 방법을 제안한다. 커브형 집적영상은 비록 기존의 집적영상보다 향상된 샘플링 비율 때문에 더 많은 요소영상을 픽업 할 수 있지만, 먼 거리 물체에 대한 샘플링 효율이 여전히 낮은 원인 때문에 픽업된 요소영상으로 물체를 재생하면 해상도가 낮은 문제점이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 커브형 집적영상 시스템에서 픽업된 원 요소영상에 다이렉트 픽셀매핑 방법을 적용하여, 먼 거리에 위치한 물체를 마치 가까이에서 픽업한 것과 같은 새로운 요소영상을 생성한다. 이 새로운 요소영상을 이용하여 커브형 집적영상 시스템에서 최종 해상도가 향상된 물체의 영상을 재생하게 된다. 실험결과에서 기존 방법과의 비교를 통하여 제안방법의 유용성을 검증하였다.

Keywords

References

  1. T. Okoshi, "Three-dimensional display," Proceedings of the IEEE, 68, pp. 548-564, 1980. https://doi.org/10.1109/PROC.1980.11695
  2. J. Rosen, B. Katz, and G. Brooker, "Review of three-dimensional holographic imaging by Fresnel incoherent correlation hologram," 3D Research, 1(1), pp. 28-35, 2010. https://doi.org/10.1007/3DRes.01(2010)3
  3. Y. Kim, K. Hong, and B. Lee, "Recent researches based on integral imaging display method," 3D Research, 1(1), pp. 17-27, 2010. https://doi.org/10.1007/3DRes.01(2010)2
  4. G. Lippmann, "La photographie integrale," C. R. Acad. Sci., 146, pp 446-451, 1908.
  5. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett., 26, pp. 157-159, 2001. https://doi.org/10.1364/OL.26.000157
  6. J. -H. Park, J. Kim, Y. Kim, and B. Lee, "Resolution enhanced three dimension/two dimension convertible display based on integral imaging," Opt. Express, 13, pp. 1875-1884, 2005. https://doi.org/10.1364/OPEX.13.001875
  7. Y. Kim, J. Park, S. Min, S. Jung, H. Choi, and B. Lee, "Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array," Appl. Opt., 44, pp. 546-552, 2005. https://doi.org/10.1364/AO.44.000546
  8. H. -H. Kang, D. -H. Shin, and E. -S. Kim, "Compression scheme of sub-images using Karhunen- Loeve Transform in three-dimensional integral imaging," Opt. Commun., 281, pp 3640-3647, 2008. https://doi.org/10.1016/j.optcom.2008.03.051
  9. D. -H. Shin and H. Yoo, "Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems," Appl. Opt., 48, pp. 827-833, 2009. https://doi.org/10.1364/AO.48.000827
  10. D. -H. Shin, B. Lee, and E. -S. Kim, "Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens," Appl. Opt., 45, pp. 7375-7381, 2006. https://doi.org/10.1364/AO.45.007375
  11. J. -B. Hyun, D. -C. Hwang, D. -H. Shin, and E. -S. Kim, "Curved Computational integral imaging reconstruction technique for resolution- enhanced display of three-dimensional object images," Appl. Opt., 46, pp. 7697-7708, 2007. https://doi.org/10.1364/AO.46.007697
  12. Y. Piao, D. -H. Shin, and E. -S. Kim, "Computational depth conversion of reconstructed three-dimensional object images in curving- effective integral imaging system," Jpn. J. Appl. Phys., 49, pp. 022501, 2010. https://doi.org/10.1143/JJAP.49.022501