DOI QR코드

DOI QR Code

Brief comparison of the mechanism of modern medicine and traditional medicine in neuronal cell death

  • Kim, Young-Sick (Department of Pharmacology, College of Oriental Medicine, Kyung Hee University) ;
  • Jeong, Hyun-Ja (Biochip Research Center, Hoseo University) ;
  • Kim, Hyung-Min (Department of Pharmacology, College of Oriental Medicine, Kyung Hee University) ;
  • Cho, Seung-Hun (Department of Neuropsychiatry, College of Oriental Medicine, Kyung Hee University)
  • Received : 2011.05.21
  • Accepted : 2011.11.30
  • Published : 2011.11.30

Abstract

Medicine has a past, a present, and will have a future; the same can be said for many diseases. Even with the surprising development of modern medicine, traditional medicine, especially eastern Asian traditional medicines still exist and are widely used in those regions. But modern medicine and western pacific traditional medicines have different theories and applications for the same disease. In this review, traditional medical theory, used together with modern medicine, can be combined to shed light on the area of neuronal death.

Keywords

References

  1. Aloyz RS, Bamji SX, Pozniak CD, Toma JG, Atwal J, Kaplan DR, Miller FD. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J Cell Biol. 1998;143(6):1691-1703. https://doi.org/10.1083/jcb.143.6.1691
  2. Anderson CN, Tolkovsky AM. A role for MAPK/ERK in sympathetic neuron survival: protection against a p53- dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci. 1999;19(2):664-673.
  3. Araki T, Enokido Y, Inamura N, Aizawa S, Reed JC, Hatanaka H. Changes in c-Jun but not Bcl-2 family proteins in p53- dependent apoptosis of mouse cerebellar granule neurons induced by DNA damaging agent bleomycin. Brain Res. 1998;794(2):239-247. https://doi.org/10.1016/S0006-8993(98)00231-5
  4. Banasiak KJ, Haddad GG. Hypoxia-induced apoptosis: effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res. 1998;797(2):295-304. https://doi.org/10.1016/S0006-8993(98)00286-8
  5. Bao HY, Zhang J, Yeo SJ, Myung CS, Kim HM, Kim JM, Park JH, Cho J, Kang JS. Memory enhancing and neuroprotective effects of selected ginsenosides. Arch Pharm Res. 2005;28(3):335-342. https://doi.org/10.1007/BF02977802
  6. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest. 1997;100(6):1363-1372. https://doi.org/10.1172/JCI119656
  7. Chen RW, Chuang DM. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem. 1999;274(10):6039-6042. https://doi.org/10.1074/jbc.274.10.6039
  8. Chen RW, Saunders PA, Wei H, Li Z, Seth P, Chuang DM. Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53. J Neurosci. 1999;19(21):9654-9662.
  9. Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM. Ginsenoside Rg1 reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress. Acta Pharmacol Sin. 2005;26(1):56-62. https://doi.org/10.1111/j.1745-7254.2005.00019.x
  10. Cheng XR, Zhou WX, Zhang YX. The effects of Liuwei Dihuang decoction on the gene expression in the hippocampus of senescence-accelerated mouse. Fitoterapia. 2007;78(3):175-181. https://doi.org/10.1016/j.fitote.2006.11.006
  11. Choi WH, Chu JP, Jiang MH, Baek SH, Park HD. Effects of fraction obtained from Korean Corni Fructus extracts causing anti-proliferation and p53-dependent apoptosis in A549 lung cancer cells. Nutr Cancer. 2011;63(1):121-129.
  12. Crumrine RC, Thomas AL, Morgan PF. Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab. 1994;14(6):887-891. https://doi.org/10.1038/jcbfm.1994.119
  13. Dagher PC. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int. 2004;66(2):506-509. https://doi.org/10.1111/j.1523-1755.2004.761_7.x
  14. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215-221. https://doi.org/10.1038/356215a0
  15. Eberspächer E, Werner C, Engelhard K, Pape M, Gelb A, Hutzler P, Henke J, Kochs E. The effect of hypothermia on the expression of the apoptosis-regulating protein Bax after incomplete cerebral ischemia and reperfusion in rats.J Neurosurg Anesthesiol. 2003;15(3):200-208. https://doi.org/10.1097/00008506-200307000-00007
  16. Eberspacher E, Werner C, Engelhard K, Pape M, Laacke L, Winner D, Hollweck R, Hutzler P, Kochs E. Long-term effects of hypothermia on neuronal cell death and the concentration of apoptotic proteins after incomplete cerebral ischemia and reperfusion in rats. Acta Anaesthesiol Scand. 2005;49(4):477-487. https://doi.org/10.1111/j.1399-6576.2005.00649.x
  17. Engstrom FL, Woodbury DM. Seizure susceptibility in DBA and C57 mice: the effects of various convulsants. Epilepsia. 1988;29(4):389-395. https://doi.org/10.1111/j.1528-1157.1988.tb03736.x
  18. Enokido Y, Araki T, Aizawa S, Hatanaka H. p53 involves cytosine arabinoside-induced apoptosis in cultured cerebellar granule neurons. Neurosci Lett. 1996A;203(1):1-4. https://doi.org/10.1016/0304-3940(95)12247-8
  19. Enokido Y, Araki T, Tanaka K, Aizawa S, Hatanaka H. Involvement of p53 in DNA strand break-induced apoptosis in postmitotic CNS neurons. Eur J Neurosci. 1996B;8(9):1812-1821. https://doi.org/10.1111/j.1460-9568.1996.tb01325.x
  20. Ferraro TN, Golden GT, Smith GG, Berrettini WH. Differential susceptibility to seizures induced by systemic kainic acid treatment in mature DBA/2J and C57BL/6J mice. Epilepsia. 1995;36(3):301-307. https://doi.org/10.1111/j.1528-1157.1995.tb00999.x
  21. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998;12(19):2973-2983. https://doi.org/10.1101/gad.12.19.2973
  22. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54(18):4855-4878.
  23. Gu B, Nakamichi N, Zhang WS, Nakamura Y, Kambe Y, Fukumori R, Takuma K, Yamada K, Takarada T, Taniura H, et al. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-D-aspartate receptors composed of an NR1/NR2B subunit assembly. J Neurosci Res. 2009;87(9):2145-2156. https://doi.org/10.1002/jnr.22021
  24. Gunasekar PG, Kanthasamy AG, Borowitz JL, Isom GE. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem. 1995;65(5):2016-2021. https://doi.org/10.1046/j.1471-4159.1995.65052016.x
  25. Halterman MW, Miller CC, Federoff HJ. Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci. 1999;19(16):6818-6824.
  26. Hertel M, Tretter Y, Alzheimer C, Werner S. Connective tissue growth factor: a novel player in tissue reorganization after brain injury? Eur J Neurosci. 2000;12(1):376-380. https://doi.org/10.1046/j.1460-9568.2000.00930.x
  27. Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science. 1998;280(5366):1089-1091. https://doi.org/10.1126/science.280.5366.1089
  28. Hirata H, Cadet JL. p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies. J Neurochem. 1997;69(2):780-790. https://doi.org/10.1046/j.1471-4159.1997.69020780.x
  29. Hsieh MT, Cheng SJ, Lin LW, Wang WH, Wu CR. The ameliorating effects of acute and chronic administration of LiuWei Dihuang Wang on learning performance in rodents. Biol Pharm Bull. 2003;26(2):156-161. https://doi.org/10.1248/bpb.26.156
  30. Hu RQ, Koh S, Torgerson T, Cole AJ. Neuronal stress and injury in C57/BL mice after systemic kainic acid administration. Brain Res. 1998;810(1-2):229-240. https://doi.org/10.1016/S0006-8993(98)00863-4
  31. Johnson MD, Xiang H, London S, Kinoshita Y, Knudson M, Mayberg M, Korsmeyer SJ, Morrison RS. Evidence for involvement of Bax and p53, but not caspases, in radiationinduced cell death of cultured postnatal hippocampal neurons. J Neurosci Res. 1998;54(6):721-733. https://doi.org/10.1002/(SICI)1097-4547(19981215)54:6<721::AID-JNR1>3.0.CO;2-1
  32. Jordán J, Galindo MF, Prehn JH, Weichselbaum RR, Beckett M, Ghadge GD, Roos RP, Leiden JM, Miller RJ. p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. J Neurosci. 1997;17(4):1397-1405.
  33. Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee SM, Chung JM, et al. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res. 2007;1136(1):190-199. https://doi.org/10.1016/j.brainres.2006.12.047
  34. Kim S, Kim T, Ahn K, Park WK, Nah SY, Rhim H. Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem Biophys Res Commun. 2004;323(2):416-424. https://doi.org/10.1016/j.bbrc.2004.08.106
  35. Kim S, Nah SY, Rhim H. Neuroprotective effects of ginseng saponins against L-type $Ca^{2+}$ channel-mediated cell death in rat cortical neurons. Biochem Biophys Res Commun. 2008;365(3):399-405. https://doi.org/10.1016/j.bbrc.2007.10.048
  36. Kim S, Rhim H. Ginsenosides inhibit NMDA receptormediated epileptic discharges in cultured hippocampal neurons. Arch Pharm Res. 2004;27(5):524-530. https://doi.org/10.1007/BF02980126
  37. Kleen JK, Holmes GL. Taming TLR4 may ease seizures. Nat Med. 2010;16(4):369-370. https://doi.org/10.1038/nm0410-369
  38. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10(9):1054-1072. https://doi.org/10.1101/gad.10.9.1054
  39. Kuntz C 4th, Kinoshita Y, Beal MF, Donehower LA, Morrison RS. Absence of p53: no effect in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp Neurol. 2000;165(1):184-190. https://doi.org/10.1006/exnr.2000.7464
  40. Lange-Asschenfeldt C, Kojda G. Alzheimer's disease, cerebrovascular dysfunction and the benefits of exercise: from vessels to neurons. Exp Gerontol. 2008;43(6):499-504. https://doi.org/10.1016/j.exger.2008.04.002
  41. Lee E, Kim S, Chung KC, Choo MK, Kim DH, Nam G, Rhim H. 20(S)-ginsenoside Rh2, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur J Pharmacol. 2006;536(1-2):69-77. https://doi.org/10.1016/j.ejphar.2006.02.038
  42. Leker RR, Aharonowiz M, Greig NH, Ovadia H. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol. 2004;187(2):478-486. https://doi.org/10.1016/j.expneurol.2004.01.030
  43. Leung KW, Yung KK, Mak NK, Chan YS, Fan TP, Wong RN. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology. 2007;52(3):827-835. https://doi.org/10.1016/j.neuropharm.2006.10.001
  44. Li W, Wang X, Liu B, Zhang Y, Deng J, Sun G. Preventing steroid-induced osteonecrosis of the femoral head with Liuwei dihuang pills and molecular mechanism. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24(4):446-451.
  45. Liu P, Xu B, Cavalieri TA, Hock CE. Pifithrin-alpha attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats. Shock. 2006;26(6):608-614. https://doi.org/10.1097/01.shk.0000232273.11225.af
  46. Liu W, Fan YG, Xia XZ, Liu JR, Wang HB, Zeng YR. Human osteoblast-like cells OS-732 intervened with alcohol and treated with liuweidihuang pill medicated serum. Zhong Yao Cai. 2010;33(2):249-252.
  47. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993;362(6423):847-849. https://doi.org/10.1038/362847a0
  48. Luo CX, Zhu XJ, Zhang AX, Wang W, Yang XM, Liu SH, Han X, Sun J, Zhang SG, Lu Y, et al. Blockade of L-type voltage-gated Ca channel inhibits ischemia-induced neurogenesis by down-regulating iNOS expression in adult mouse. J Neurochem. 2005;94(4):1077-1086. https://doi.org/10.1111/j.1471-4159.2005.03262.x
  49. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233-1238. https://doi.org/10.1126/science.1978757
  50. Morrison RS, Kinoshita Y. The role of p53 in neuronal cell death. Cell Death Differ. 2000;7(10):868-879. https://doi.org/10.1038/sj.cdd.4400741
  51. Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA. Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci. 1996;16(4):1337-1345.
  52. Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D. Interplay between cytosolic dopamine, calcium, and alphasynuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218-229. https://doi.org/10.1016/j.neuron.2009.01.033
  53. Muir JK, Raghupathi R, Emery DL, Bareyre FM, McIntosh TK. Postinjury magnesium treatment attenuates traumatic brain injury-induced cortical induction of p53 mRNA in rats. Exp Neurol. 1999;159(2):584-593. https://doi.org/10.1006/exnr.1999.7187
  54. Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990;11(11):462-468. https://doi.org/10.1016/0165-6147(90)90129-V
  55. Park E, Hwang I, Song JY, Jee Y. Acidic polysaccharide of Panax ginseng as a defense against small intestinal damage by whole-body gamma irradiation of mice. Acta Histochem. 2011;113(1):19-23. https://doi.org/10.1016/j.acthis.2009.07.003
  56. Qi D, Zhu Y, Wen L, Liu Q, Qiao H. Ginsenoside Rg1 restores the impairment of learning induced by chronic morphine administration in rats. J Psychopharmacol. 2009;23(1):74-83. https://doi.org/10.1177/0269881107082950
  57. Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res. 2004;1021(1):41-53. https://doi.org/10.1016/j.brainres.2004.06.030
  58. Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen JH, Friis S. L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol. 2010;67(5):600-606.
  59. Royle SJ, Collins FC, Rupniak HT, Barnes JC, Anderson R. Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice. Brain Res. 1999;816(2):337-349. https://doi.org/10.1016/S0006-8993(98)01122-6
  60. Sakhi S, Bruce A, Sun N, Tocco G, Baudry M, Schreiber SS. p53 induction is associated with neuronal damage in the central nervous system. Proc Natl Acad Sci U S A. 1994;91(16):7525-7529. https://doi.org/10.1073/pnas.91.16.7525
  61. Sakhi S, Sun N, Wing LL, Mehta P, Schreiber SS. Nuclear accumulation of p53 protein following kainic acid-induced seizures. Neuroreport. 1996;7(2):493-496. https://doi.org/10.1097/00001756-199601310-00028
  62. Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci U S A. 1997;94(8):4103-4108. https://doi.org/10.1073/pnas.94.8.4103
  63. Shin HT, Chung SH, Lee JS, Kim SS, Shin HD, Jang MH, Shin MC, Bahn GH, Paik EK, Park JH, et al. Protective effect of shenqi-wan against H2O2-induced apoptosis in hippocampal neuronal cells. Am J Chin Med. 2003;31(5):675-686. https://doi.org/10.1142/S0192415X03001454
  64. Simon RP, Swan JH, Griffiths T, Meldrum BS. Blockade of Nmethyl- D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984;226(4676):850-852. https://doi.org/10.1126/science.6093256
  65. Smith ML, Kumar MA. The "Two faces" of Tumor Suppressor p53-revisited. Mol Cell Pharmacol. 2010;2(3):117-119.
  66. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH Germline transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348(6303):747-749. https://doi.org/10.1038/348747a0
  67. Szeto YT, Lei PC, Ngai KL, Yiu AT, Chan CS, Kok EW, Leong CW. An in vitro study of the antioxidant activities and effect on human DNA of the Chinese herbal decoction 'Liu Wei Di Huang'. Int J Food Sci Nutr. 2009;60(8):662-667. https://doi.org/10.3109/09637480802012209
  68. Tong G, Shepherd D, Jahr CE. Synaptic desensitization of NMDA receptors by calcineurin. Science. 1995;267(5203):1510-1512. https://doi.org/10.1126/science.7878472
  69. Trimmer PA, Smith TS, Jung AB, Bennett JP Jr. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration. 1996;5(3):233- 239. https://doi.org/10.1006/neur.1996.0031
  70. Uberti D, Belloni M, Grilli M, Spano P, Memo M. Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Eur J Neurosci. 1998;10(1):246-254. https://doi.org/10.1046/j.1460-9568.1998.00042.x
  71. Van Kampen J, Robertson H, Hagg T, Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson's disease. Exp Neurol. 2003;184(1):521-529. https://doi.org/10.1016/j.expneurol.2003.08.002
  72. Verkhratsky A, Kirchhoff F. NMDA Receptors in glia. Neuroscientist. 2007;13(1):28-37. https://doi.org/10.1177/1073858406294270
  73. Vogel KS, Parada LF. Sympathetic neuron survival and proliferation are prolonged by loss of p53 and neurofibromin. Mol Cell Neurosci. 1998;11(1-2):19-28. https://doi.org/10.1006/mcne.1998.0670
  74. Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell. 2009;137(3):413-431. https://doi.org/10.1016/j.cell.2009.04.037
  75. Wang Y, Liu J, Zhang Z, Bi P, Qi Z, Zhang C. Antineuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci Lett. 2011;487(1):70-72. https://doi.org/10.1016/j.neulet.2010.09.076
  76. Wennersten A, Holmin S, Mathiesen T. Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol. 2003;105(3):281-288.
  77. Wong VK, Cheung SS, Li T, Jiang ZH, Wang JR, Dong H, Yi XQ, Zhou H, Liu L. Asian ginseng extract inhibits in vitro and in vivo growth of mouse lewis lung carcinoma via modulation of ERK-p53 and NF-${\kappa}B$ signaling. J Cell Biochem. 2010;111(4):899-910. https://doi.org/10.1002/jcb.22778
  78. Wood KA, Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci. 1995;15(8):5851-5857.
  79. Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS. Evidence for p53-mediated modulation of neuronal viability. J Neurosci. 1996;16(21):6753-6765.
  80. Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS. Bax involvement in p53-mediated neuronal cell death. J Neurosci. 1998;18(4):1363-1373.
  81. Xu H, Jiang H, Wang J, Xie J. Rg1 protects iron-induced neurotoxicity through antioxidant and iron regulatory proteins in 6-OHDA-treated MES23.5 cells. J Cell Biochem. 2010A;111(6):1537-1545. https://doi.org/10.1002/jcb.22885
  82. Xu H, Jiang H, Wang J, Xie J. Rg1 protects the $MPP^+$-treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake. Neuropharmacology. 2010B;58(2):488-494. https://doi.org/10.1016/j.neuropharm.2009.09.002
  83. Xue YM, Luo R, Zhu B, Zhang Y, Pan YH, Li CZ. Effects of liuwei dihuang pills on expressions of apoptosis-related genes bcl-2 and Bax in pancreas of OLETF rats. Zhong Xi Yi Jie He Xue Bao. 2005;3(6):455-458. https://doi.org/10.3736/jcim20050609
  84. Yang S, Zhou W, Zhang Y, Yan C, Zhao Y. Effects of Liuwei Dihuang decoction on ion channels and synaptic transmission in cultured hippocampal neuron of rat. J Ethnopharmacol. 2006;106(2):166-172. https://doi.org/10.1016/j.jep.2005.12.017
  85. Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, Chen Y, Li P, Liu J, Shi M, et al. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience. 2011;178:169-180. https://doi.org/10.1016/j.neuroscience.2011.01.007
  86. Yonekura I, Takai K, Asai A, Kawahara N, Kirino T. p53 potentiates hippocampal neuronal death caused by global ischemia. J Cereb Blood Flow Metab. 2006;26(10):1332-1340. https://doi.org/10.1038/sj.jcbfm.9600293
  87. You-Ping Zhu. Chinese Material Medica. Harwood academic publishers. pp. 549-557, 1998.
  88. Youdim MB. Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res. 2008;14(1):45-56. https://doi.org/10.1007/BF03033574
  89. Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care. 2005;9(1):66-75. https://doi.org/10.1186/cc2950
  90. Zhao H, Li Q, Pei X, Zhang Z, Yang R, Wang J, Li Y. Longterm ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus. Behav Brain Res. 2009;201(2):311-317. https://doi.org/10.1016/j.bbr.2009.03.002
  91. Zhao R, Zhang Z, Song Y, Wang D, Qi J, Wen S. Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase- 3β pathway in ginsenoside Rb1's attenuation of beta-amyloidinduced neurotoxicity and tau phosphorylation. J Ethnopharmacol. 2011;133(3):1109-1116. https://doi.org/10.1016/j.jep.2010.11.054
  92. Zhao X, Wang Y, Sun Y. Simultaneous determination of four bioactive constituents in Liuwei Dihuang Pills by micellar electrokinetic chromatography. J Pharm Biomed Anal. 2007;44(5):1183-1186. https://doi.org/10.1016/j.jpba.2007.04.025
  93. Zheng GQ, Cheng W, Wang Y, Wang XM, Zhao SZ, Zhou Y, Liu SJ, Wang XT. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol. 2011;133(2):724-728. https://doi.org/10.1016/j.jep.2010.01.064

Cited by

  1. Therapeutic effects of traditional Korean medicine, Jeechool-Whan in allergic rhinitis model vol.2, pp.1, 2011, https://doi.org/10.5667/tang.2011.0002