DOI QR코드

DOI QR Code

Analysis of binary sequences generated by GMW sequences and No sequences

GMW 수열과 No 수열에 의해서 생성된 이진 수열 분석

  • Received : 2011.05.09
  • Accepted : 2011.06.10
  • Published : 2011.10.31

Abstract

In this paper, a family of binary sequences generated by GMW sequences and No sequences is introduced and analyzed. Each sequence within a family has period $N=2^n-1$, n=2m and there are $2^m$ sequences within that family. We obtain auto and cross-correlation values and linear span of the synthesized sequence.

본 논문에서는 GMW 수열과 No 수열에 의해서 생성된 이진 수열들의 집합을 소개하고 분석한다. 집합안의 각 수열들은 주기 $N=2^n-1$이고 n=2m 이며 $2^m$개의 수열들이 있다. 합성된 수열의 자기상관계수와 상호상관계수 그리고 선형스팬을 구한다.

Keywords

References

  1. R. A. Scholtz and L. R. Welch, "GMW Sequences," IEEE Trans. Inform. Theory, vol. IT-30, no. 3, pp. 548-553, May 1984.
  2. R. A. Scholtz, "The origins of spread-spectrum communications," IEEE Trans. Commun., vol. COM-30, pp. 822-854, May 1982.
  3. M. P. Ristenbatt and J. L. Daws, Jr., "Performance criteria for spread spectrum communications," IEEE Trans. Commun., vol. COM-25, no. 8, pp. 756-763, Aug. 1977.
  4. D. V. Sarwarte and M. B. Pursley, "Crosscorrelation properties of pseudorandom and related sequences," Proc. IEEE, vol. 68, no. 5, pp. 593-620, May. 1980.
  5. J. D. Olsen, R. A. Scholtz, and L. R. Welch, "Bent-function sequences." IEEE Trans. Inform. Theory, vol. IT-28. no. 6, pp. 858-864, Nov. 1982.
  6. P. V. Kumar and R. A. Scholtz, "Bounds on the linear span of bent sequences," IEEE Trans. Inform. Theory, vol. IT-29, no. 6, pp. 854-862, Nov. 1983.
  7. A. Lempel and M. Cohn, "Maximal families of bent sequences," IEEE Trans. Inform. Theory, vol. IT-28, pp. 865-868, Nov. 1982.
  8. R. Gold, "Optimal binary sequences for spread spectrum multiplexing," IEEE Trans. Inform. Theory, vol. IT-13, no. 5, pp. 619-621, Oct. 1967.
  9. R. Gold, "Maximal recursive sequences with 3-valued recursive crosscorrelation functions," IEEE Trans. Inform. Theory, vol. IT-14, no. 1, pp. 154-156, Jan. 1968.
  10. T. Kasami, "Weight distribution formula for some class of cyclic codes," Coordinated Science Laboratory, University of Illinois, Urbana, Tech. Rep. R-285(AD632574), 1966.
  11. T. Kasami,, "Weight distribution of Bose-Chaudhuri-Hocquenghem codes," in Combinatorial Mathematics and its Applications. Chapel Hill, NC: University of North Carolina Press, 1969.
  12. J. S. No and P. V. Kumar, "A New Family of Binary Pseudorandom Sequences Having Optimal Periodic Correlation Properties and Large Linear Span," IEEE Trans. Inform. Theory, vol. 35, no. 2, pp. 371-379, Mar. 1989. https://doi.org/10.1109/18.32131
  13. E.L. Key, An analysis of the structure and complexity of nonlinear binary sequence generators, IEEE Trasn. Infor. Theor. vol. 22, no. 6, pp. 732-736, Nov. 1976. https://doi.org/10.1109/TIT.1976.1055626
  14. S.W. Golomb, Shift register sequences, Holden-Day, Inc, 1967.
  15. 조성진 외 2인, 알기 쉬운 유한체론, 경문사, 2005.

Cited by

  1. +3) vol.18, pp.3, 2014, https://doi.org/10.6109/jkiice.2014.18.3.609