DOI QR코드

DOI QR Code

SLANT HELICES IN MINKOWSKI SPACE E13

  • Ali, Ahmad T. (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KING ABDUL AZIZ UNIVERSITY, MATHEMATICS DEPARTMENT FACULTY OF SCIENCE) ;
  • Lopez, Rafael (DEPARTAMENTO DE GEOMETRIA Y TOPOLOGIA UNIVERSIDAD DE GRANADA)
  • Received : 2009.05.22
  • Published : 2011.01.01

Abstract

We consider a curve $\alpha$= $\alpha$(s) in Minkowski 3-space $E_1^3$ and denote by {T, N, B} the Frenet frame of $\alpha$. We say that $\alpha$ is a slant helix if there exists a fixed direction U of $E_1^3$ such that the function is constant. In this work we give characterizations of slant helices in terms of the curvature and torsion of $\alpha$. Finally, we discuss the tangent and binormal indicatrices of slant curves, proving that they are helices in $E_1^3$.

Keywords

References

  1. M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.
  2. A. Ferrandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Internat. J. Modern Phys. A 16 (2001), no. 30, 4845-4863. https://doi.org/10.1142/S0217751X01005821
  3. S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2004), no. 2, 153-163.
  4. H. Kocayigit and H. M. Onder, Timelike curves of constant slope in Minkowski space $E_{1}^{4}$, J. Science Techn. Beykent Univ. 1 (2007), 311-318.
  5. W. Kuhnel, Differential Geometry: Curves, Surfaces, Manifolds, Weisbaden: Braunschweig, 1999.
  6. L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), no. 1, 600-607. https://doi.org/10.1016/j.amc.2004.09.078
  7. R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, arXiv:0810.3351v1, 2008.
  8. M. Onder, M. Kazaz, H. Kocayigit, and O. Kilic, $B_2$-slant helix in Euclidean 4-space $E_4$, Int. J. Contemp. Math. Sci. 3 (2008), no. 29-32, 1433-1440.
  9. M. Petrovic-Torgasev and E. Sucurovic, W-curves in Minkowski space-time, Novi Sad J. Math. 32 (2002), no. 2, 55-65.
  10. J. Walrave, Curves and surfaces in Minkowski space, Doctoral Thesis, K.U. Leuven, Fac. Sci., Leuven, 1995.

Cited by

  1. Magnetic Curves in Three-Dimensional Quasi-Para-Sasakian Geometry vol.13, pp.4, 2016, https://doi.org/10.1007/s00009-015-0570-y
  2. Slant helices in three dimensional Lie groups vol.221, 2013, https://doi.org/10.1016/j.amc.2013.07.008
  3. SURFACES IN 𝔼3 MAKING CONSTANT ANGLE WITH KILLING VECTOR FIELDS vol.23, pp.06, 2012, https://doi.org/10.1142/S0129167X11007665
  4. The Fermi-Walker Derivative on the Spherical Indicatrix of Spacelike Curve in Minkowski 3-Space vol.26, pp.2, 2016, https://doi.org/10.1007/s00006-015-0635-9
  5. Space-Like Slant Curves in Three-Dimensional Normal Almost Paracontact Geometry 2017, https://doi.org/10.1007/s40995-017-0232-y
  6. POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE vol.36, pp.2, 2014, https://doi.org/10.5831/HMJ.2014.36.2.233
  7. On Curves ofNk–Slant Helix andNk–Constant Precession in Minkowski 3–Space vol.12, pp.2, 2014, https://doi.org/10.1080/1726037X.2014.988933
  8. Some associated curves of Frenet non-lightlike curves in E 1 3 vol.394, pp.2, 2012, https://doi.org/10.1016/j.jmaa.2012.04.063
  9. Helix surfaces and slant helices in the three-dimensional anti-De Sitter space vol.111, pp.4, 2017, https://doi.org/10.1007/s13398-016-0361-8
  10. The slant helix solutions of the equilibrium shape equations for the biopolymer chains vol.55, pp.2, 2017, https://doi.org/10.1016/j.cjph.2016.11.008
  11. New Representations of Spherical Indicatricies of Bertrand Curves in Minkowski 3-Space vol.2015, 2015, https://doi.org/10.1155/2015/509058
  12. Type-2 Spacelike Bishop Frame and an Application to Spherical Image in Minkowski Space–Time 2017, https://doi.org/10.1007/s40819-017-0316-6
  13. NOTE ON NULL HELICES IN $\mathbb{E}_1^3$ vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.885
  14. Contributions to differential geometry of isotropic curves in the complex space C3 – II vol.440, pp.2, 2016, https://doi.org/10.1016/j.jmaa.2016.02.072
  15. Characterizations of Spacelike Slant Helices In Minkowski 3-Space vol.0, pp.0, 2014, https://doi.org/10.2478/aicu-2014-0051
  16. Pseudo-spherical Darboux images and lightcone images of principal-directional curves of nonlightlike curves in Minkowski 3-space pp.01704214, 2018, https://doi.org/10.1002/mma.5374
  17. -type null Cartan slant helices in Minkowski 3-space pp.01704214, 2018, https://doi.org/10.1002/mma.5221
  18. On Angles and Pseudo-Angles in Minkowskian Planes vol.6, pp.4, 2018, https://doi.org/10.3390/math6040052
  19. Conjugate mates for non-null Frenet curves pp.1301-4048, 2019, https://doi.org/10.16984/saufenbilder.494471