References
- M. Cerrolaza and E. Alarcon, A bi-cubic transformation for the numerical evaluation of the Cauchy principal value integrals in boundary methods, Internat. J. Numer. Methods Engrg. 28 (1989), no. 5, 987-999. https://doi.org/10.1002/nme.1620280502
- M. Doblare and L. Gracia, On non-linear transformations for the integration of weakly-singular and Cauchy principal value integrals, Internat. J. Numer. Methods Engrg. 40 (1997), no. 18, 3325-3358. https://doi.org/10.1002/(SICI)1097-0207(19970930)40:18<3325::AID-NME215>3.0.CO;2-Q
- D. Elliott, The cruciform crack problem and sigmoidal transformations, Math. Methods Appl. Sci. 20 (1997), no. 2, 121-132. https://doi.org/10.1002/(SICI)1099-1476(19970125)20:2<121::AID-MMA840>3.0.CO;2-7
- D. Elliott, Sigmoidal transformations and the trapezoidal rule, J. Austral. Math. Soc. Ser. B 40 (1998/99), (E), E77-E137.
- D. Elliott, The Euler-Maclaurin formula revisited, J. Austral. Math. Soc. Ser. B 40 (1998/99), (E), E27-E76.
- D. Elliott and E. Venturino, Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals, Numer. Math. 77 (1997), no. 4, 453-465. https://doi.org/10.1007/s002110050295
- P. R. Johnston, Application of sigmoidal transformations to weakly singular and near-singular boundary element integrals, Internat. J. Numer. Methods Engrg. 45 (1999), no. 10, 1333-1348. https://doi.org/10.1002/(SICI)1097-0207(19990810)45:10<1333::AID-NME632>3.0.CO;2-Q
- P. R. Johnston, Semi-sigmoidal transformations for evaluating weakly singular boundary element integrals, Internat. J. Numer. Methods Engrg. 47 (2000), no. 10, 1709-1730. https://doi.org/10.1002/(SICI)1097-0207(20000410)47:10<1709::AID-NME852>3.0.CO;2-V
- P. R. Johnston and D. Elliott, Error estimation of quadrature rules for evaluating sin-gular integrals in boundary element problems, Internat. J. Numer. Methods Engrg. 48 (2000), no. 7, 949-962. https://doi.org/10.1002/(SICI)1097-0207(20000710)48:7<949::AID-NME905>3.0.CO;2-Q
- P. R. Johnston and D. Elliott, A generalisation of Telles' method for evaluating weakly singular boundary element integrals, J. Comput. Appl. Math. 131 (2001), no. 1-2, 223-241. https://doi.org/10.1016/S0377-0427(00)00273-9
- N. M. Korobov, Number-Theoretic Methods in Approximate Analysis, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963.
- G. Monegato and I. H. Sloan, Numerical solution of the generalized airfoil equation for an airfoil with a flap, SIAM J. Numer. Anal. 34 (1997), no. 6, 2288-2305. https://doi.org/10.1137/S0036142995295054
- S. Prossdorf and A. Rathsfeld, On an integral equation of the first kind arising from a cruciform crack problem, Integral equations and inverse problems (Varna, 1989), 210-219, Pitman Res. Notes Math. Ser., 235, Longman Sci. Tech., Harlow, 1991.
- T. W. Sag and G. Szekeres, Numerical evaluation of high-dimensional integrals, Math. Comput. 18 (1964), 245-253. https://doi.org/10.1090/S0025-5718-1964-0165689-X
- J. Sanz Serna, M. Doblare, and E. Alarcon, Remarks on methods for the computation of boundary-element integrals by co-ordinate transformation, Comm. Appl. Numer. Methods 6 (1990), no. 2, 121-123. https://doi.org/10.1002/cnm.1630060208
- M. Sato, S. Yoshiyoka, K. Tsukui, and R. Yuuki, Accurate numerical integration of singular kernels in the two-dimensional boundary element method, in: C.A. Brebbia(Eds.), Boundary Elements X Vol.1, Springer, Berlin, 1988, pp. 279-296.
- A. Sidi, A new variable transformation for numerical integration, Numerical integration, IV (Oberwolfach, 1992), 359-373, Internat. Ser. Numer. Math., 112, Birkhauser, Basel, 1993.
- K. M. Singh and M. Tanaka, On non-linear transformations for accurate numerical evaluation of weakly singular boundary integrals, Internat. J. Numer. Methods Engrg. 50 (2001), no. 8, 2007-2030. https://doi.org/10.1002/nme.117
- J. C. F. Telles, A self-adaptive co-ordinate transformation for efficient numerical evalu-ation of general boundary element integrals, Internat. J. Numer. Meth. Eng. 24 (1987), 959-973. https://doi.org/10.1002/nme.1620240509
- B. I. Yun, An extended sigmoidal transformation technique for evaluating weakly singu-lar integrals without splitting the integration interval, SIAM J. Sci. Comput. 25 (2003), no. 1, 284-301. https://doi.org/10.1137/S1064827502414606
- B. I. Yun, A compositie transformation for numerical integration of singular integrals in the BEM, Internat. J. Numer. Methods Engrg. 57 (2003), no. 13, 1883-1898. https://doi.org/10.1002/nme.748
- B. I. Yun, A generalized non-linear transformation for evaluating singular integrals, Internat. J. Numer. Methods Engrg. 65 (2006), no. 12, 1947-1969. https://doi.org/10.1002/nme.1529
- B. I. Yun and P. Kim, A new sigmoidal transformation for weakly singular integrals in the boundary element method, SIAM J. Sci. Comput. 24 (2003), no. 4, 1203-1217. https://doi.org/10.1137/S1064827501396191