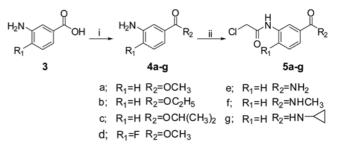

Synthesis and Bioactivity of Novel Adamantyl Derivatives as Potent MDR Reversal Agents

Ravi Naik,^a Chanoh Jeon,^{†,a} Hyeyoung Min,[†] Hyun Kyung Choi, Kyung Hoon Min,^{†,*} and Kyeong Lee^{*}

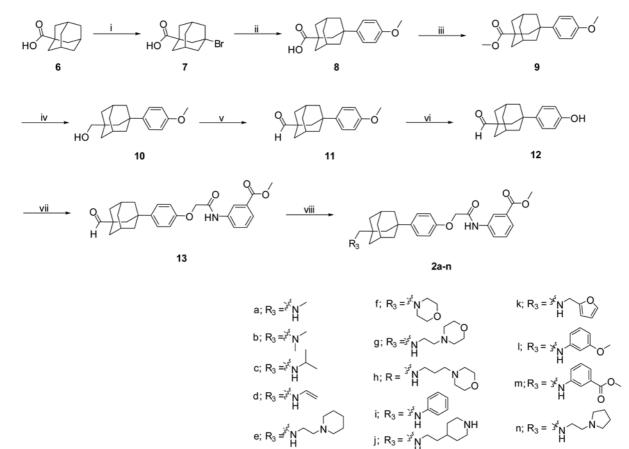
College of Pharmacy, Dongguk University-Seoul, Seoul 100-715, Korea. *E-mail: kaylee@dongguk.edu [†]College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea. *E-mail: khmin@cau.ac.kr Received October 4, 2011, Accepted October 24, 2011

Key Words : P-gp, P-Glycoprotein, MDR-Multidrug resistance, Small molecule inhibitor

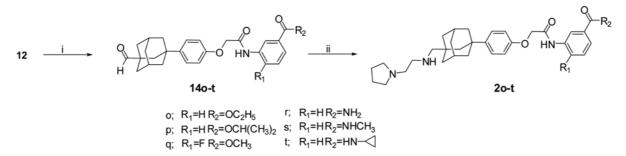
Multidrug Resistance (MDR) is a type of resistance of tumor cells to various kinds of chemotherapeutic drugs which are structurally unrelated and also one of the major impediments to chemotherapeutic treatment of cancer.¹⁻⁴ It has been reported that 49 ATP-binding cassette (ABC) transporter genes are present in the human genome. Among them, over-expression of P-glycoprotein (P-gp), encoded by MDR1 gene is one of the major factors contributing to multidrug resistance which leads to barrier to successful chemotherapy.^{5,6} Therefore the availability of safe and potent MDR reversal agents would be beneficial for clinical use. Reversal agents can act by binding to the membrane transport protein (P-gp), by inhibiting MDR's drug efflux capacity, or by suppressing expression of the MDR1 gene itself.⁷ Although a number of P-gp inhibitors have been developed, there is currently no clinically useful drug that inhibits P-gp. In an attempt to find new and more effective MDR reversal agents, we previously identified adamantyl derivatives exhibiting more potent MDR reversal activity than verapamil, a well-known P-gp inhibitor, without considerable intrinsic cytotoxicity. Compounds 1-2 were identified utilizing high throughput image-based DIOC₂ efflux assays and anti-proliferation assays in a P-gp over-expressing MDR sarcoma cell line, MES-SA/DX5. Herein we


^aThese authors contributed equally to this work.

describe a further structure-activity relationship study to find additional compounds in this series.^{8,9}


With the objective of investigating the effect of aminebased substituents on reversal activity, we synthesized a series of adamantyl derivatives **2a-t** that feature reductive amination of the adamantyl aldehyde derivatives as a key step. The synthetic procedures for **2a-t** are described in Schemes 1 to 3.

Synthesis of a new series of adamantyl derivatives (2a-t) were carried out starting from commercially available 3amino benzoic acid 3 (Scheme 1). The corresponding esters (4a-d) and amides (4e-g) of 3-amino benzoic acid were prepared in the next step. Further alkylation with chloroacetyl chloride resulted in the alkylated derivatives (5a-g). Bromination of 1-adamantane carboxylic acid 6 with bromine gave an intermediate 7, which was followed by Friedel-Crafts alkylation with anisole to provide compound 8, as shown in Scheme 2. Esterification of 8 resulted in compound 9, which was reacted with LiAlH₄ to give an alcohol 10. The aldehyde 11 was then obtained by oxidation of alcohol 10. Demethylation of 11 was carried out by using BBr₃ to afford a phenol compound 12, which was utilized as a key intermediate to prepare the final compounds. Adamantyl aldehyde 13, a precursor for the synthesis of the target adamantyl motifs (2a-n), was generated by reacting 12 with methyl 3-(2chloroacetamido) benzoate 5a. In similar fashion, the precursor 140-t was generated by reacting 12 with 5b-g for the synthesis of derivatives 20-t. Finally the reductive amination reaction of 13 or 14o-t with a variety of amine resulted in Pgp related MDR modulators 2a-t.


Reversal activity of these derivatives was evaluated in

Scheme 1. Reagents and Conditions; (i) R₂-H, SOCl₂, 0 °C to 90 °C, 4 h for **4a-d** or EDC·HCl, HOBt, DIPEA, DMF, rt, 8 h for **4e-g** (ii) 2-Chloroacetyl chloride, Triethylamine, CH₂Cl₂, rt, 12 h.

Scheme 2. Reagents and Conditions: (i)Br₂, AlCl₃, -5 °C to rt, 24 h; (ii) AlCl₃, Anisole, -10 °C to rt, 24 h; (iii) SOCl₂, MeOH, 0 °C to 90 °C, 4 h; (iv) LiAlH₄, THF, 0 °C to rt, 2 h; (v) PCC, CH₂Cl₂, 0 °C to rt, 1 h; (vi) BBr₃, CH₂Cl₂, 0 °C, 1 h; (vii) K₂CO₃, Cs₂CO₃, 5a, DMF, 60 °C, 18 h; (viii) R₃H, NaCNBH₃, ZnCl₂, MeOH, rt, 12 h.

Scheme 3. Reagents and Conditions; (i) K₂CO₃, Cs₂CO₃, **5b-g**, DMF, 60 °C, 18 h; (ii) 2-(pyrrolidin-1-yl)ethanamine, NaCNBH₃, ZnCl₂, MeOH, rt, 12 h.

MES-SA/DX5 cells. EC₅₀ values of the synthesized compounds were measured in the presence of 100 nM taxol. Some of these derivatives showed more potent MDR reversal activity than the well-known P-gp inhibitor, verapamil. Compound **2n** with a pyrrolidinyl ethyl amino moiety displayed an EC₅₀ value of 0.66 μ M, which is 13.5 fold more potent than verapamil (EC₅₀ = 0.66 *vs* 8.94 μ M, respectively) as shown in Table 1. Most alkyl amine derivatives were slightly more potent than verapamil. However, aniline analogues (**2i**, **2l** and **2m**) resulted in a marked loss of activity. Compound **2m** bearing an electron withdrawing group showed complete loss of reversal activity. Reversal activity of morpholine derivatives (**2f-h**) is prone to decrease with increasing chain length. A further SAR study has been carried out with the synthesis of adamantyl derivatives **20-t**, keeping R_3 constant and introducing several substituents at either R_1 or R_2 . Unfortunately, none of the derivatives have better IC₅₀ values compared to **2n**. Interestingly, a cyclopropyl amino compound (**2t**) was found to be over 9 fold more potent than verapamil, while replacement of the ester group with an amide (**2r** and **2s**) led to no measurable activity. These results suggest that moderate hydrophobicity, size of the side chain and an amine with a proton seem to be essential to retain reversal activity. Table 1. Structure-activity relationship of adamantyl analogues

R'_3	R ₁

	Structure				
No.	R_1	R ₂	R ₃	$\frac{\text{EC}_{50},\mu\text{M}^a}{(100\text{ nM taxol})}$	Fold increase
2a	Н	OCH ₃	N H	11.7	0.8
2b	Н	OCH ₃	N N	2.42	3.7
2c	Н	OCH ₃	, AS N H	4.22	2.1
2d	Н	OCH ₃	N H	4.18	2.1
2e	Н	OCH ₃	XAN N	4.7	1.9
2f	Н	OCH ₃	N N N	4.29	2.1
2g	Н	OCH ₃	X ² ⁴ ⁴ N	6.56	1.4
2h	Н	OCH ₃	² ² ² N H	7.91	1.1
2i	Н	OCH ₃	AND	14.53	0.6
2ј	Н	OCH ₃	, set NI	H 6.4	1.4
2k	Н	OCH ₃		4.83	1.9
21	Н	OCH ₃	Press North Contraction	10.0	0.9
2m	Н	OCH ₃		>20	-
2n	Н	OCH ₃		0.66	13.5
20	Н	OC ₂ H ₅		1.65	5.4
2p	Н	OCH(CH ₃) ₂		7.03	1.3
2q	F	OCH ₃		4.48	2.0
2r	Н	NH ₂		>20	-
2s	Н	NHCH ₃		>20	-
2t	Н	NH-		11.33	0.8
Verapam	il		н	8.94	1

 ${}^{a}\text{EC}_{50}$ values were determined in the presence of 100 nM Taxol. The cells were then treated with varying concentrations of a test compound in the presence or absence of 100 nM Taxol for 60 hrs. Then, cell survival was assayed using Cell Counting Kit-8 (dojindo).

Bull. Korean Chem. Soc. 2011, Vol. 32, No. 12 4446

In summary, we identified potent MDR-reversing adamantyl compounds through a structure-activity relationship study. Compound 2n showed excellent reversal activity, which was about 13-fold more potent than verapamil. Further investigation may lead to the developments of clinically valuable MDR modulators.

Experimental Section

General Procedure for Reductive Amination Reaction (2a-t). To a stirred solution of the adamantyl aldehyde (13 for 2a-n, and 14o-t for 2o-t, respectively) (1 equiv), and amines (3.0 equiv) in methanol (10 volumes) at room temperature was added a solution of sodium cyanoborohydride (1 M) (1 equiv) and zinc chloride (0.5 M) (1 equiv) in methanol (5 mL). The resulting solution was stirred at room temperature for 8 hours. After most of the methanol was removed by evaporation under reduced pressure, the residue was purified by column chromatography to obtain the product (2a-t). The spectral data can be found in the supporting information.

Acknowledgments. This work was supported by the Dongguk University Research Fund of 2010, Republic of Korea.

References

- Barile, E.; Borriello, M.; Pietro, A. D.; Doreau, A.; Fattorusso, C.; Fattorusso, E.; Lanzotti, V. Org. Biomol. Chem. 2008, 6, 1756-1762.
- Torres-Romero, D.; Muñoz-Martínez, F.; Jiménez, I., A.; Castanys, S.; Gamarro, F.; Bazzocchi, I. L. Org. Biomol. Chem. 2009, 7, 5166-5172.
- Chung, S. Y.; Sung, M. K.; Kim, N. H.; Jang, J. O.; Go, E. J.; Lee, H. J. Arch. Pharm. Res. 2005, 28, 6979-6987.
- Raad, I.; Terreux, R.; Richomme, P.; Matera, E. L.; Dumontet, C.; Raynaud, J.; Guilet, D. *Bioorg. Med. Chem.* 2006, *14*, 6979-6987.
- Sivapackiam, J.; Harpstrite, S. E.; Prior, J. L.; Gu, H.; Rath, N. P.; Sharma, V. *Dalton Trans.* 2010, *39*, 5842-5850.
- Xia, Y.; Lee, K. Biomolecules & Therapeutics 2010, 18(4), 375-385.
- Bisi, A.; Meli, M.; Gobbi, S.; Rampa, A.; Tolomeo, M.; Dusonchet, L. Bioorg. Med. Chem. Lett. 2008, 16, 6474-6482.
- Coburger, C.; Wollmann, J.; Baumert, C.; Krug, M.; Molnár, J.; Lage, H.; Hilgeroth, A. J. Med. Chem. 2008, 51, 5871-5874.
- Min, K. H.; Xia, Y.; Kim, E. K.; Jin, Y.; Kaur, N.; Kim, E. S.; Kim, D. K.; Jung, H. Y.; Choi, Y.; Park, M. Y.; Min, Y. K.; Lee, K.; Lee, K. Bioorg. Med. Chem. Lett. 2009, 19, 5376-5379.