DOI QR코드

DOI QR Code

QSPR Studies on Impact Sensitivities of High Energy Density Molecules

  • Kim, Chan-Kyung (High Energy Material Research Center and Department of Chemistry, Inha University) ;
  • Cho, Soo-Gyeong (Agency for Defense Development) ;
  • Li, Jun (High Energy Material Research Center and Department of Chemistry, Inha University) ;
  • Kim, Chang-Kon (High Energy Material Research Center and Department of Chemistry, Inha University) ;
  • Lee, Hai-Whang (High Energy Material Research Center and Department of Chemistry, Inha University)
  • Received : 2011.05.30
  • Accepted : 2011.10.17
  • Published : 2011.12.20

Abstract

Impact sensitivity, one of the most important screening factors for novel high energy density materials (HEDMs), was predicted by use of quantitative structure-property relationship (QSPR) based on the electrostatic potential (ESP) values calculated on the van der Waals molecular surface (MSEP). Among various 3D descriptors derived from MSEP, we utilized total and positive variance of MSEP, and devised a new QSPR equation by combining three other parameters. We employed 37 HEDMs bearing a benzene scaffold and nitro substituents, which were also utilized by Rice and Hare. All the molecular structures were optimized at the B3LYP/6-31G(d) level of theory and confirmed as minima by the frequency calculations. Our new QSPR equation provided a good result to predict the impact sensitivities of the molecules in the training set including zwitterionic molecules.

Keywords

References

  1. Jurs, P. C. In the Encyclopedia of Computational Chemistry; Vol. 4, Schleyer, P. v. R., Ed.; John Wiley & Sons: 1998; p 2320.
  2. Politzer, P.; Murray, J. S. In the Quantitative Treatments of Solute/ Solvent Interactions; Elsevier Amsterdam: 1994; p 243.
  3. Murray, J. S.; Brinck, T.; Politzer, P. Chem. Phys. 1996, 204, 289. https://doi.org/10.1016/0301-0104(95)00297-9
  4. Politzer, P.; Murray, J. S.; Grice, M. E.; Desalvo, M.; Miller, E. Mol. Phys. 1997, 91, 923. https://doi.org/10.1080/002689797171030
  5. Murray, J. S.; Lane, P.; Politzer, P. Mol. Phys. 1998, 93, 187. https://doi.org/10.1080/002689798169203
  6. Kim, C. K.; Lee, K. A.; Hyun K. H.; Park, H. J.; Kwack, I. Y.; Kim, C. K.; Lee, H. W.; Lee, B.-S. J. Comput. Chem. 2004, 25, 2073. https://doi.org/10.1002/jcc.20129
  7. Pauling, L. In the Nature of Chemical Bond and the Structure of Molecules and Crystals; Cornell Univ. Press Ithaca, 1960.
  8. Valvani, S. C.; Yalkowsky, S. H.; Amidon, G. L. J. Phys. Chem. 1976, 80, 829. https://doi.org/10.1021/j100549a012
  9. Kim, C. K.; Cho, S. G.; Kim, C. K.; Park, H.-Y.; Zhang, H.; Lee, H. W. J. Comput. Chem. 2008, 29, 1818. https://doi.org/10.1002/jcc.20943
  10. Murray, J. S.; Brinck, T.; Lane, P.; Paulsen, K.; Politzer, P. J. Mol. Struct. (THEOCHEM) 1994, 93, 187.
  11. Rice, B. M.; Hare, J. J. J. Phys. Chem. A 2002, 106, 1770. https://doi.org/10.1021/jp012602q
  12. Cambridge Structural Database, ver. 5.24, 2005.
  13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6. Gaussian, Inc., Pittsburgh PA, 1998.
  14. GaussView 3.0, Gaussian Inc., Carnegie Office Park - Building 6, Pittsburgh, PA, 15106 USA.
  15. Microcal Origin ver. 6.0, Microcal Software, Inc., One Roundhouse Plaza, Northampton, MA 01060 USA.
  16. Ouvrard, C.; Mitchell, J. B. O. Acta Cryst. 2003, B59, 676.
  17. Charlton, M. H.; Docherty, R.; Hutchings, M. G. J. Chem. Soc. Perkin Trans 2 1995, 2023.
  18. Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714. https://doi.org/10.1021/jm000942e

Cited by

  1. Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: A brief review vol.113, pp.8, 2013, https://doi.org/10.1002/qua.24209
  2. Prediction of Physicochemical Properties of Organic Molecules Using Semi-Empirical Methods vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1043
  3. A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes vol.115, pp.24, 2015, https://doi.org/10.1021/acs.chemrev.5b00215
  4. System vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10030
  5. MSEP and CoMFA Studies on the Melting Points of Nitroaromatic Compounds vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10356
  6. Prediction of Crystal Density and Explosive Performance of High-Energy-Density Molecules Using the Modified MSEP Scheme vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10928
  7. Effects of different dopant elements on structures, electronic properties, and sensitivity characteristics of nitromethane vol.24, pp.10, 2018, https://doi.org/10.1007/s00894-018-3832-3
  8. All-Nitrogen Cages and Molecular Crystals: Topological Rules, Stability, and Pyrolysis Paths vol.8, pp.4, 2011, https://doi.org/10.3390/computation8040091