DOI QR코드

DOI QR Code

A Noninjection Reaction Route to CuInSe2 Nanocrystals with Triethanolamine as the Complexing Agent

  • Liu, Wen-Long (School of Chemical Engineering, Sichuan University) ;
  • Wu, Meng-Qiang (State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China) ;
  • Zhou, Ru-Chao (School of Chemical Engineering, Sichuan University) ;
  • Yan, Li-Dan (School of Chemical Engineering, Sichuan University) ;
  • Zhang, Shu-Ren (State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China) ;
  • Zhang, Qi-Yi (School of Chemical Engineering, Sichuan University)
  • Received : 2011.04.14
  • Accepted : 2011.10.15
  • Published : 2011.12.20

Abstract

The chalcopyrite-type $CuInSe_2$ is a remarkable material for thin film solar cells owing to its electronic structure and optical response. Single-phase sphere-like $CuInSe_2$ nanocrystallite particles were prepared by a facile noninjection method with triethanolamine as the complexing agent and the solvent simultaneously. The period of the reaction was the key to form single-phase $CuInSe_2$ nanocrystals at $240^{\circ}C$. TEM, XRD, XPS, EDX investigations were performed to characterize the morphology and the detailed structure of as-synthesized $CuInSe_2$ nanocrystals. All of the analysis results proved that the synthesized nanocrystals were pure phase and close to the stoichiometric ratio rather than a simple mixture. The band gap of the obtained $CuInSe_2$ nanocrystals was $1.03{\pm}0.03$ eV.

Keywords

References

  1. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. Prog. Photovolt.: Res. Appl. 2008, 16, 235. https://doi.org/10.1002/pip.822
  2. Hibberd, C. J.; Chassaing, E.; Liu, W.; Mitzi, D. B.; Lincot, D.; Tiwari, A. N. Prog. Photovolt.: Res. Appl. 2010, 18, 434. https://doi.org/10.1002/pip.914
  3. Habas, S. E.; Platt, H. A. S.; van Hest, M. F. A. M.; Ginley, D. S. Chem. Rev. 2010, 110, 6594.
  4. Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Nano Lett. 2008, 8, 2982. https://doi.org/10.1021/nl802042g
  5. Schoen, D. T.; Peng, H. L.; Cui, Y. J. Am. Chem. Soc. 2009, 131, 7973. https://doi.org/10.1021/ja901086t
  6. Chang, J.; Han, J. E.; Jung, D. Y. Bull. Korean Chem. Soc. 2011, 32, 434. https://doi.org/10.5012/bkcs.2011.32.2.434
  7. Olejnicek, J.; Kamler, C. A.; Mirasano, A.; Martinez-Skinner, A. L.; Ingersoll, M. A.; Exstrom, C. L.; Darveau, S. A.; Huguenin- Love, J. L.; Diaz, M.; Ianno, N. J.; Soukup, R. J. Sol. Energ. Mat. Sol. C 2010, 94, 8. https://doi.org/10.1016/j.solmat.2009.03.024
  8. Tang, J.; Hinds, S.; Kelley, S. O.; Sargent, E. H. Chem. Mater. 2008, 20, 6906. https://doi.org/10.1021/cm801655w
  9. Norako, M. E.; Brutchey, R. L. Chem. Mater. 2010, 22, 1613. https://doi.org/10.1021/cm100341r
  10. Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. J. Am. Chem. Soc. 2008, 130, 5620. https://doi.org/10.1021/ja711027j
  11. Guo, Q.; Ford, G. M.; Hillhouse, H. W.; Agrawal, R. Nano Lett. 2009, 9, 3060. https://doi.org/10.1021/nl901538w
  12. Pan, D. C.; Wang, X. L.; Zhou, Z. H.; Chen, W.; Xu, C. L.; Lu, Y. F. Chem. Mater. 2009, 21, 2489. https://doi.org/10.1021/cm900439m
  13. Chen, H.; Yu, S. M.; Shin, D. W.; Yoo, J. B. Nanoscale. Res. Lett. 2010, 5, 217. https://doi.org/10.1007/s11671-009-9468-6
  14. Zhang, D. Q.; Li, G. S.; Yu, J. C. Cryst. Growth. Des. 2009, 9, 2812. https://doi.org/10.1021/cg900063q
  15. Liu, T. Y.; Li, M. J.; Ouyang, J. Y.; Zaman, M. B.; Wang, R. B.; Wu, X. H.; Yeh, C. S.; Lin, Q.; Yang, B.; Yu, K. J. Phys. Chem. C 2009, 113, 2301. https://doi.org/10.1021/jp809171f
  16. Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D. ACS nano. 2010, 4, 5253. https://doi.org/10.1021/nn1015538
  17. Chung, J.; Kim, S. J. Bull. Korean Chem. Soc. 2010, 31, 2695. https://doi.org/10.5012/bkcs.2010.31.9.2695
  18. Jeong, S.; Hu, L. B.; Lee, H. R.; Garnett, E.; Choi, J. W.; Cui, Y. Nano Lett. 2010, 10, 2989. https://doi.org/10.1021/nl101432r
  19. Xu, J.; Lee, C. S.; Tang, Y. B.; Chen, X.; Chen, Z. H.; Zhang, W. J.; Lee, S. T.; Zhang, W. X.; Yang, Z. H. ACS nano. 2010, 4, 1854.
  20. Whang, T. J.; Hsieh, M. T.; Kao, Y. C.; Lee, S. J. Appl. Surf. Sci. 2009, 255, 4600. https://doi.org/10.1016/j.apsusc.2008.11.081
  21. Kazmerski, L. L.; Jamjoum, O.; Ireland, P. J.; Deb, S. K.; Mickelsen, R. A.; Chen, W. J. Vac. Sci. Technol. 1981, 19, 467. https://doi.org/10.1116/1.571040
  22. Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Hepp, A. F. Chem. Mater. 2003, 15, 3142. https://doi.org/10.1021/cm034161o
  23. Wang, Y.; Suna, A.; Mahler, W.; Kasowski, R. J. Chem. Phys. 1987, 87, 7315. https://doi.org/10.1063/1.453325

Cited by

  1. Ternary and quaternary chalcopyrite Cu(In1−xGax)Se2 nanocrystals: organoalkali-assisted diethylene glycol solution synthesis and band-gap tuning vol.15, pp.36, 2013, https://doi.org/10.1039/c3ce40813b
  2. Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1473
  3. The Heat-Up Synthesis of Colloidal Nanocrystals vol.27, pp.7, 2015, https://doi.org/10.1021/cm5028964
  4. A Comparative Study of Nanoparticle-Ink-Based CIGSSe Thin Film Solar Cells on Different Back Contact Substrates vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10684