DOI QR코드

DOI QR Code

A Correction Method for the Peak Tailing Backgrounds for Accurate Isotope Ratio Measurements of Uranium in Ultra Trace Levels using Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Choi, In-Hee (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Su-Jin (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Myung-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Kyu-Seok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2011.09.19
  • Accepted : 2011.10.15
  • Published : 2011.12.20

Abstract

A new method in thermal ionization mass spectrometry (TIMS) was developed to correct peak tailing backgrounds in the isotope ratio measurements of uranium in ultra trace levels for higher accuracy. Two different uranium standard reference materials (U005 and U030) were used to construct databases of signal intensities at mass 234 u and mass 236 u, which correspond to the two uranium minor isotopes, and signal intensity of $^{238}U$. Correlations between peak tailing backgrounds and $^{238}U$ were obtained by least-squares regression on calculated backgrounds at mass 234 u and mass 236 u with respect to the signal intensity of $^{238}U$ followed by separation of the peak tails of the two major isotopes of uranium ($^{235}U$ and $^{238}U$), which enables us to obtain a master equation for peak tailing background correction on all kinds of samples. Verification of the correction method was carried out using U010 and IRMM-040a.

Keywords

References

  1. Donohue, D. L. J. Alloy Compd. 1998, 271-273, 11. https://doi.org/10.1016/S0925-8388(98)00015-2
  2. Stoffel(S), J. J.; Wacker, J. F.; Kelley, J. M.; Bond, L. A.; Kiddy, R. A.; Brauer, F. P. Appl. Spectrosc. 1994, 48, 1326. https://doi.org/10.1366/0003702944028092
  3. Sahoo, S. K.; Yonehara, H.; Kurotaki, K.; Fujimoto, K.; Nakamura, Y. J. Radioanal. Nucl. Chem. 2002, 2, 241.
  4. Richter, S.; Goldberg, S. A. Int. J. Mass Spectrom. 2003, 229, 181. https://doi.org/10.1016/S1387-3806(03)00338-5
  5. Esaka, F.; Watanabe, K.; Fukuyama, H.; Onodera, T.; Esaka, K. T.; Magara, M.; akrai, S.; Usuda, S. J. Nucl.Sci. Technol. 2004, 41, 1027. https://doi.org/10.3327/jnst.41.1027
  6. Stirling, C. H.; Halliday, A. N.; Porcelli, D. Geochim. Cosmochim. Acta 2005, 69, 1059. https://doi.org/10.1016/j.gca.2004.06.034
  7. Lee, C.-G.; Iguchi, K.; Esaka, F.; Magara, M.; Sakurai, S.; Watanabe, K.; Usuda, S. Jpn. J. Appl. Phys. 2006, 45, 294. https://doi.org/10.1143/JJAP.45.L294
  8. Kraiem, M.; Richter, S.; Kühn, H.; Aregbe, Y. Anal. Chim. Acta 2011, 688, 1. https://doi.org/10.1016/j.aca.2011.04.055
  9. Cohen, A. S.; Belshaw, N. S.; O'Nions, R. K. Int. J. Mass Spectrom. Ion Processes 1992, 116, 71. https://doi.org/10.1016/0168-1176(92)80020-2
  10. Suzuki, K.; Miyta, Y.; Kanazawa, N. Int. J. Mass. Spectrom. 2004, 235, 97. https://doi.org/10.1016/j.ijms.2004.04.006
  11. Burger, S.; Richiputi, L. R.; Bostick, D. A.; Turgeon, S.; McBay, E. H.; Lavelle, M. Int. J. Mass Spectrom. 2009, 286, 70. https://doi.org/10.1016/j.ijms.2009.06.010
  12. Suzuki, D.; Saito-Kokubu, Y.; Sakurai, S.; Lee, C.-G.; Magara, M.; Iguchi, K.; Kimura, T. Int. J. Mass Spectrom. 2010, 294, 23. https://doi.org/10.1016/j.ijms.2010.04.007
  13. Schoenberg, R.; Blanckenburg, F. Int. J. Mass Spectrom. 2005, 242, 257. https://doi.org/10.1016/j.ijms.2004.11.025
  14. Jakopie, R.; Richter, S.; Kühn, H.; Benedik, L.; Pihlar, B.; Aregbe, Y. Int. J. Mass Spectrom. 2009, 279, 87. https://doi.org/10.1016/j.ijms.2008.10.014
  15. Hoffmann, D. L.; Prytulak, J.; Richards, D. A.; Elliott, T.; Coath, C. D.; Smart, P. L.; Scholz, D. Int. J. Mass Spectrom. 2007, 264, 97. https://doi.org/10.1016/j.ijms.2007.03.020
  16. Hoffmann, D. L.; Spötl, C.; Mangini, A. Chem. Geol. 2009, 259, 253. https://doi.org/10.1016/j.chemgeo.2008.11.015
  17. Newman, K.; Freedman, P. A.; Williams, J.; Belshaw, N. S.; Halliday, A. N. J. Anal. At. Spectom. 2009, 24, 742. https://doi.org/10.1039/b819065h
  18. Makishima, A.; Chekol, T. A.; Nakamura, E. J. Anal. At. Spectrom. 2007, 22, 1383. https://doi.org/10.1039/b706907c
  19. Park, J.-H.; Choi, I.; Song, K. Mass Spectrom. Lett. 2010, 1, 17. https://doi.org/10.5478/MSL.2010.1.1.017
  20. Pavlenko, V. A.; Pliss, N. S.; Sokolov, B. N.; Shcherbakov, A. P. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 55. https://doi.org/10.1016/0020-7381(83)80051-5
  21. Calsteren, P.; Schwieters, J. B. Int. J. Mass Spectrom. Ion Processes 1995, 146/147, 119. https://doi.org/10.1016/0168-1176(95)04208-3
  22. Guide to the Expression of Uncertainty in Measurement, International Organization for Standardization, 1995; ISBN 92-6r-r10188-9.

Cited by

  1. Uranyl–water-containing complexes: solid-state UV-MALDI mass spectrometric and IR spectroscopic approach for selective quantitation vol.21, pp.2, 2014, https://doi.org/10.1007/s11356-013-1892-6
  2. Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry vol.5, pp.1, 2014, https://doi.org/10.5478/MSL.2014.5.1.12
  3. Bulk analysis of a simulated environmental sample in natural abundance performed in KAERI for nuclear safeguards vol.303, pp.2, 2015, https://doi.org/10.1007/s10967-014-3484-4
  4. Development of environmental sample analysis technique in KAERI: bulk analysis and establishment of clean laboratory facility (CLASS) vol.307, pp.3, 2016, https://doi.org/10.1007/s10967-015-4372-2
  5. Experimental evaluation of uranium ion signal intensity enhancement of TIMS using graphite powder deposition on uranium samples vol.316, pp.3, 2018, https://doi.org/10.1007/s10967-018-5768-6
  6. Complete Simultaneous Analysis of Uranium Isotopes in NUSIMEP-7 Microparticles Using SEM-TIMS vol.7, pp.3, 2016, https://doi.org/10.5478/msl.2016.7.3.64
  7. Experimental evaluation of the detection methods of thermal ionization mass spectrometry for isotopic analysis of ultra-trace level uranium vol.137, pp.None, 2011, https://doi.org/10.1016/j.microc.2017.11.013