DOI QR코드

DOI QR Code

Solvent-free Synthesis of Propargylic Alcohols using ZnO as a New and Reusable Catalyst by Direct Addition of Alkynes to Aldehydes

  • Received : 2011.08.22
  • Accepted : 2011.10.11
  • Published : 2011.12.20

Abstract

Under solvent-free conditions, the synthesis of propargylic alcohols by direct addition of terminal alkynes to aldehydes promoted by ZnO as a novel, commercially, and cheap catalyst is described. Furthermore, the catalyst can be reused for several times without any significant loss of its catalytic activity.

Keywords

References

  1. Pu, L. Tetrahedron 2003, 59, 9873. https://doi.org/10.1016/j.tet.2003.10.042
  2. Stephane, G.; Aline, B.; Karen, P.; Annie, L.; Arnaud, H. Chem. Rev. 2006, 106, 2355. https://doi.org/10.1021/cr0509915
  3. Koyuncu, H.; Dogan, O. Org. Lett. 2007, 9, 3477. https://doi.org/10.1021/ol701535y
  4. Hudrlik, P. F.; Hudrlik, A. M. The Chemistry of the Carbon- Carbon Triple Bond; Part 1. In Patai, S., Ed.; John Wiley and Sons: New York, 1978; p 256.
  5. Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2004, 4095.
  6. Rajaram, A. R.; Pu, L. Org. Lett. 2006, 8, 2019. https://doi.org/10.1021/ol060377v
  7. Lin, L.; Jiang, X. X.; Liu, W. X.; Qiu, L.; Xu, Z. Q.; Xu, J. K.; Chan, A. S. C.; Wang, R. Org. Lett. 2007, 9, 2329. https://doi.org/10.1021/ol070692x
  8. Li, Z.-B.; Liu, T.-D.; Pu, L. J. Org. Chem. 2007, 72, 4340. https://doi.org/10.1021/jo070091j
  9. Trost, B. M.; Weiss, A. H. Org. Lett. 2006, 8, 4461. https://doi.org/10.1021/ol0615836
  10. Tominaga, H.; Maezaki, N.; Yanai, M.; Kojima, N.; Urabe, D.; Ueki, R.; Tanaka, T. Eur. J. Org. Chem. 2006, 1422.
  11. Treilhou, M.; Fauve, A.; Pougny, J.-R.; Promé, J.-C.; Veschambref, H. J. Org. Chem. 1992, 57, 3203. https://doi.org/10.1021/jo00037a044
  12. Sierra, M. A.; Torres, M. R. J. Org. Chem. 2007, 72, 4213. https://doi.org/10.1021/jo0703698
  13. Johnson, W. S.; Brinkmeyer, R. S.; Kapoor, U. M.; Yarnell, T. M. J. Am. Chem. Soc. 1977, 99, 8341. https://doi.org/10.1021/ja00467a048
  14. Chan, K. K.; Cohen, N. C.; Denoble, J. P.; Specian, A. C., Jr.; Saucy, G. J. Org. Chem. 1976, 41, 3497. https://doi.org/10.1021/jo00884a001
  15. Gao, G.; Xie, R.-G.; Pu, L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5417. https://doi.org/10.1073/pnas.0307136101
  16. Li, Z.-B.; Pu, L. Org. Lett. 2004, 6, 1065. https://doi.org/10.1021/ol0498139
  17. Xu, Z.; Chen, C.; Xu, J.; Miao, M.; Yan, W.; Wang, R. Org. Lett. 2004, 6, 1193. https://doi.org/10.1021/ol036418u
  18. Dahmen, S. Org. Lett. 2004, 6, 2113. https://doi.org/10.1021/ol049596b
  19. Liu, L.; Pu, L. Tetrahedron 2004, 60, 7427. https://doi.org/10.1016/j.tet.2004.05.049
  20. Kang, Y.-F.; Liu, L.; Wang, R.; Yan, W.-J.; Zhou, Y.-F. Tetrahedron: Asymmetry 2004, 15, 3155.
  21. Cozzi, P. G. Angew. Chem., Int. Ed. 2003, 42, 2895. https://doi.org/10.1002/anie.200351230
  22. Liu, L.; Wang, R.; Kang, Y.-F.; Chen, C.; Xu, Z.-Q.; Zhou, Y.-F.; Ni, M.; Cai, H.-Q.; Gong, M.-Z. J. Org. Chem. 2005, 70, 1084. https://doi.org/10.1021/jo0483522
  23. Brown, H. C.; Molander, G. A.; Singh, S. M.; Racherla, U. S. J. Org. Chem. 1985, 50, 1577. https://doi.org/10.1021/jo00210a003
  24. Ahn, J. H.; Joung, M. J.; Yoon, N. M.; Oniciu, D. C.; Katritzky, A. R. J. Org. Chem. 1999, 64, 488. https://doi.org/10.1021/jo9814750
  25. Ahn, J. H.; Joung, M. J.; Yoon, N. M. J. Org. Chem. 1995, 60, 6173. https://doi.org/10.1021/jo00124a034
  26. Hirao, T.; Misu, D.; Agawa, T. Tetrahedron Lett. 1986, 27, 933. https://doi.org/10.1016/S0040-4039(00)84141-6
  27. Imamoto, T.; Sugiura, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233. https://doi.org/10.1016/S0040-4039(01)81404-0
  28. Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806. https://doi.org/10.1021/ja993838z
  29. Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373. https://doi.org/10.1021/ar990078o
  30. Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, i123, 9687.
  31. Fassler, R.; Tomooka, C. S.; Frantz, D. E.; Carreira, E. M. Proc. Natl. Acad. Sci. U.S.A. 2004, i101, 5843.
  32. Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 1999, 121, 11245. https://doi.org/10.1021/ja993074n
  33. Yamaguchi, M.; Hayashi, A.; Minami, T. J. Org. Chem. 1991, 56, 4091. https://doi.org/10.1021/jo00013a003
  34. Yamaguchi, M.; Hayashi, A.; Hirama, M. Chem. Lett. 1992, 2479.
  35. Han, Y.; Huang, Y.-Z. Tetrahedron Lett. 1995, 36, 7277. https://doi.org/10.1016/0040-4039(95)01565-Y
  36. Jiang, B.; Si, Y.-G. Tetrahedron Lett. 2002, 43, 8323. https://doi.org/10.1016/S0040-4039(02)01986-X
  37. Harada, S.; Takita, R.; Ohshima, T.; Matsunaga, S.; Shibasaki, M. Chem. Commun. 2007, 948.
  38. Takita, R.; Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. Org. Lett. 2005, 7, 1363. https://doi.org/10.1021/ol050069h
  39. Tsuji, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 13760. https://doi.org/10.1021/ja053946n
  40. Sakai, N.; Hirasawa, M.; Konakahara, T. Tetrahedron Lett. 2003, 44, 4171. https://doi.org/10.1016/S0040-4039(03)00931-6
  41. Sakai, N.; Kanada, R.; Hirasawa, M.; Konakahara, T. Tetrahedron 2005, 61, 9298. https://doi.org/10.1016/j.tet.2005.07.059
  42. Natalia, M.-V.; Julia, K.; Ilan, M. Synthesis 2000, 917.
  43. Kazuhiko, T.; Tooru, K.; Shigeki, N.; Koichiro, O.; Hitosi, N. Tetrahedron Lett. 1985, 45, 5585.
  44. Xuefeng, J.; Hongwei, Y.; Ling, F.; Chengjian, Z. Tetrahedron Lett. 2008, 49, 1370. https://doi.org/10.1016/j.tetlet.2007.12.086
  45. Srihari, P.; Singh, V. K.; Bhunia, D. C.; Yadav, J. S. Tetrahedron Lett. 2008, 49, 7132. https://doi.org/10.1016/j.tetlet.2008.09.156
  46. Gu, C. Z.; Li, Q. R.; Yin, H. Chin. Chem. Lett. 2005, 16, 1573.
  47. Justicia, J.; Sancho-Sanz, I.; Alvarez-Manzaneda, E.; Oltra, E.; Cuerva, J. M. Adv. Synht. Catal. 2009, 351, 2295. https://doi.org/10.1002/adsc.200900479
  48. Loh, T. P.; Lin, M.-J.; Tan, K.-L. Tetrahedron Lett. 2003, 44, 507. https://doi.org/10.1016/S0040-4039(02)02613-8
  49. Sharghi, H.; Hosseini Sarvari, M. Synthesis 2002, 8, 1057.
  50. Hosseini-Sarvari, M.; Sharghi, H. J. Org. Chem. 2004, 69(20), 6953. https://doi.org/10.1021/jo0494477
  51. Hosseini-Sarvari, M.; Synthesis 2005, 5, 787.
  52. Hosseini-Sarvari, M.; Sharghi, H. Tetrahedron 2005, 61, 10903. https://doi.org/10.1016/j.tet.2005.09.002
  53. Hosseini-Sarvari, M.; Sharghi, H. J. Org. Chem. 2006, 71, 6652. https://doi.org/10.1021/jo060847z
  54. Hosseini-Sarvari, M.; Sharghi, H. Phos. Silicon. Sulf. 2007, 182, 2125. https://doi.org/10.1080/10426500701372355
  55. Hosseini-Sarvari, M. Synth. Commun. 2008, i6, 832.
  56. Hosseini-Sarvari, M. Act. Chim. Slov. 2008, 440.
  57. Hosseini-Sarvari, M.; Sharghi, H.; Etemad, S. Helv. Chim. Acta 2008, 91, 715. https://doi.org/10.1002/hlca.200890072
  58. Hosseini-Sarvari, M.; Catalysis Lett. 2011, 114, 347.
  59. Hosseini-Sarvari, M.; Mardaneh, Z. Bul. Chem. Soc. Jpn 2011, 84, 778. https://doi.org/10.1246/bcsj.20110040

Cited by

  1. Alkynylation of aldehydes mediated by zinc and allyl bromide: a practical synthesis of propargylic alcohols vol.43, pp.7, 2017, https://doi.org/10.1007/s11164-016-2859-2
  2. Zinc‐Catalyzed Dehydrogenative Cross‐Coupling of Terminal Alkynes with Aldehydes: Access to Ynones vol.127, pp.52, 2011, https://doi.org/10.1002/ange.201509042
  3. Zinc‐Catalyzed Dehydrogenative Cross‐Coupling of Terminal Alkynes with Aldehydes: Access to Ynones vol.54, pp.52, 2011, https://doi.org/10.1002/anie.201509042