DOI QR코드

DOI QR Code

Optimization of Disk Sorptive Extraction Based on Monolithic Material for the Determination of Aroma Compounds from Lantana camara L. by Gas Chromatography-Mass Spectrometry

  • Jang, Hye-Jin (Department of Chemistry, Seoul Women's University) ;
  • Son, Hyun-Hwa (Department of Chemistry, Seoul Women's University) ;
  • Lee, Dong-Sun (Department of Chemistry, Seoul Women's University)
  • Received : 2011.07.19
  • Accepted : 2011.10.09
  • Published : 2011.12.20

Abstract

Present study describes the optimization of disk type sorptive extraction using monolithic material (Mono Trap) for the analysis of volatile aroma compounds from Lantana camara L. in combination with gas chromatography/mass spectrometry (GC/MS). Monolithic material sorptive extraction (MMSE) is a new sampling technique using a monolithic hybrid adsorptive disk (O.D. 10 mm, 1 mm thickness) made of high purity silica and activated carbon having a large surface area chemically bonded with octadecyl silane (ODS). The experimental parameters that may influence the MMSE efficiency have been optimized. Linearity, accuracy, precision and detection limits were evaluated to assess the performance of the proposed method. The method was validated with real plant samples of Lantana camara L. Twenty eight compounds including the main representative compounds of ${\alpha}$-curcumene and ${\beta}$-caryophyllene were found in analyzed samples. Results proved that proposed method could be used as a good alternative for the analysis for such volatile aroma compounds in plant samples.

Keywords

References

  1. Svec, F.; Tennikova, T. B.; Deyl, Z. Eds., Monolithic Materials; Elsevier, Amsterdam, 2003; pp 348-689.
  2. Svec, F.; Huber, C. G. Anal. Chem. 2006, 78, 2101.
  3. Zhu, G.; Zhang, L.; Yuan, H.; Zhang, W.; Zhang, Y. J. Sep. Sci. 2007, 30, 792. https://doi.org/10.1002/jssc.200600496
  4. Huang, X.; Yuan, D. J. Chromatogr. A 2007, 1154(1-2), 152. https://doi.org/10.1016/j.chroma.2007.03.132
  5. Kim, N. S.; Lee, D. S. J. Chromatogr. A 2002, 982, 31. https://doi.org/10.1016/S0021-9673(02)01445-0
  6. Lee, S. N.; Kim, N. S.; Lee, D. S. Anal. Bioanal. Chem. 2003, 377, 749. https://doi.org/10.1007/s00216-003-2163-z
  7. Kim, H. J.; Kim, K.; Kim, N. S.; Lee, D. S. J. Chromatogr. A 2000, 902, 389. https://doi.org/10.1016/S0021-9673(00)00863-3
  8. Won, M. M.; Cha, E. J.; Yoon, O. K.; Kim, N. S.; Kim, K.; Lee, D. S. Anal. Chim. Acta 2009, 631, 54. https://doi.org/10.1016/j.aca.2008.10.013
  9. Yoon, O. K.; Lee, D. S. Bull. Korean Chem. Soc. 2009, 30, 35. https://doi.org/10.5012/bkcs.2009.30.1.035
  10. Sato, A. A Novel Approah for Aroma Components Analysis Using Monolithic Material Sorptive Extraction method. "MonoTrap"; 2009 China-Japan-Korea Symposium on Analytical Chemistry, JAIMA Conference, Makuhari, Chiba, Japan. Aug. 31-Sep. 2, 2009; Abstract p 45.
  11. Hashi, Y.; Takeda, M.; Zhang, J. Q.; Fan, J.; Nagami, Y.; Sato, A. New Approach of Simple Pretreatment for GCMS Analysis by Using Monolithic Material Sorption Extraction for Determination of 16 PAHs, 2009 China-Japan-Korea Symposium on Analytical Chemistry, JAIMA Conference, Makuhari, Chiba, Japan. Aug. 31-Sep. 2, 2009; Abstract p 16.
  12. Arthur, C. L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145. https://doi.org/10.1021/ac00218a019
  13. Baltussen, E.; Sandra, P.; David, F.; Cramers, C. J. Microcolumn Sep. 1999, 11, 737. https://doi.org/10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4
  14. Ghisalberti, E. L. Fitoterapia 2000, 71, 467. https://doi.org/10.1016/S0367-326X(00)00202-1
  15. Andersson, S.; Dobson, H. E. M. J. Chem. Ecol. 2003, 29, 2319. https://doi.org/10.1023/A:1026278531806
  16. Randrianalijaona, J. A.; Ramanoelina, P. A. R.; Rasoarahona, J. R. E.; Gaydou, E. M. Anal. Chim. Acta 2005, 545, 46. https://doi.org/10.1016/j.aca.2005.04.028
  17. Sundufu, A. J.; Shoushan, H. Flavour Fragr. J. 2004, 19, 229. https://doi.org/10.1002/ffj.1292
  18. Oyedeji, O. A.; Ekndayo, O.; Konig, W. A. Flavour Fragr. J. 2003, 18, 384. https://doi.org/10.1002/ffj.1206

Cited by

  1. Characterization of the key odor-active compounds in steamed meat of Coilia ectenes from Yangtze River by GC–MS–O vol.238, pp.2, 2014, https://doi.org/10.1007/s00217-013-2098-3
  2. Characterization of important odorants in four steamed Coilia ectenes from China by gas chromatography–mass spectrometry–olfactometry vol.81, pp.5, 2015, https://doi.org/10.1007/s12562-015-0907-2
  3. Comparison of Volatile Compounds in Raw and Cooked Chinese Mitten Crab Hepatopancreas and Gonads vol.941-944, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.941-944.1040
  4. Electrophysiological and behavioural responses of the Eucalyptus weevil, Gonipterus platensis, to host plant volatiles pp.1612-4766, 2018, https://doi.org/10.1007/s10340-018-1055-0
  5. Volatile components present in different parts of grass carp pp.01458884, 2018, https://doi.org/10.1111/jfbc.12668
  6. Solid phase microextraction techniques used for gas chromatography: A review pp.2083-5736, 2020, https://doi.org/10.1556/1326.2018.00579
  7. Characterization of the Aroma-Active Compounds in Commercial Fragrant Rapeseed Oils via Monolithic Material Sorptive Extraction vol.67, pp.41, 2011, https://doi.org/10.1021/acs.jafc.9b05691
  8. Elucidation of Biochemical Pathways Underlying VOCs Production in A549 Cells vol.7, pp.None, 2011, https://doi.org/10.3389/fmolb.2020.00116