DOI QR코드

DOI QR Code

Quantization Rule for Relativistic Klein-Gordon Equation

  • Sun, Ho-Sung (Department of Chemistry, Sungkyunkwan University)
  • Received : 2011.08.11
  • Accepted : 2011.10.04
  • Published : 2011.12.20

Abstract

Based on the exact quantization rule for the nonrelativistic Schrodinger equation, the exact quantization rule for the relativistic one-dimensional Klein-Gordon equation is suggested. Using the new quantization rule, the exact relativistic energies for exactly solvable potentials, e.g. harmonic oscillator, Morse, and Rosen-Morse II type potentials, are obtained. Consequently the new quantization rule is found to be exact for one-dimensional spinless relativistic quantum systems. Though the physical meanings of the new quantization rule have not been fully understood yet, the present formal derivation scheme may shed light on understanding relativistic quantum systems more deeply.

Keywords

References

  1. Ou, F. C.; Cao, Z. Q.; Shen, Q. S. J. Chem. Phys. 2004, 121, 8175. https://doi.org/10.1063/1.1799015
  2. Ma, Z. Q.; Xu, B. W. Int. J. Modern Phys. E 2005, 14, 599. https://doi.org/10.1142/S0218301305003429
  3. Ma, Z. Q.; Xu, B. W. Europhys. Lett. 2005, 69, 685. https://doi.org/10.1209/epl/i2004-10418-8
  4. Grandati, Y.; Bérard, A. Phys. Lett. A 2011, 375, 390. https://doi.org/10.1016/j.physleta.2010.11.010
  5. Qiang, W. C.; Dong, S. H. Europhys. Lett. 2010, 89, 10003. https://doi.org/10.1209/0295-5075/89/10003
  6. Dong, S. H.; Morales, D.; García-Ravelo, J. Int. J. Modern Phys. E 2007, 16, 189. https://doi.org/10.1142/S0218301307005661
  7. Qiang, W. C.; Dong, S. H. Phys. Lett. A 2007, 363, 169. https://doi.org/10.1016/j.physleta.2006.10.091
  8. Dong, S. H.; Gonzalez-Cisneros, A. Ann. Phys. 2008, 323, 1136. https://doi.org/10.1016/j.aop.2007.12.002
  9. Gu, X. Y.; Dong, S. H. Phys. Lett. A 2008, 372, 1972. https://doi.org/10.1016/j.physleta.2007.11.003
  10. Dong, S. H. Int. J. Quantum Chem. 2009, 109, 701. https://doi.org/10.1002/qua.21862
  11. Chen, G. Phys. Lett. A 2005, 339, 300. https://doi.org/10.1016/j.physleta.2005.03.040
  12. de Castro, A. S. Phys. Lett. A 2005, 338, 81. https://doi.org/10.1016/j.physleta.2005.02.027
  13. de Souza Dutra, A.; Chen, G. Phys. Lett. A 2006, 349, 297. https://doi.org/10.1016/j.physleta.2005.09.056
  14. Yi, L.; Diao, Y.; Liu, J.; Jia, C. Phys. Lett. A 2004, 333, 212. https://doi.org/10.1016/j.physleta.2004.10.054
  15. Garcia, M. G.; de Castro, A. S. Ann. Phys. 2009, 324, 2372. https://doi.org/10.1016/j.aop.2009.05.010
  16. Barakat, T. Ann. Phys. 2009, 324, 725. https://doi.org/10.1016/j.aop.2008.10.008
  17. McQuarrie, B. R; Vrscay, E. R. Phys. Rev. A 1993, 47, 868. https://doi.org/10.1103/PhysRevA.47.868
  18. Barton, G. J. Phys. A: Math. Theor. 2007, 40, 1011. https://doi.org/10.1088/1751-8113/40/5/010
  19. Hall, R. L. Phys. Lett. A 2007, 372, 12. https://doi.org/10.1016/j.physleta.2007.07.003
  20. Alhaidari, A. D.; Bahlouli, H.; Al-Hasan, A. Phys. Lett. A 2006, 349, 87. https://doi.org/10.1016/j.physleta.2005.09.008
  21. Zhao, X. Q.; Jia, C. S.; Yang, Q. B. Phys. Lett. A 2005, 337, 189. https://doi.org/10.1016/j.physleta.2005.01.062
  22. Jana, T. K.; Roy, P. Phys. Lett. A 2009, 373, 1239. https://doi.org/10.1016/j.physleta.2009.02.007
  23. Jana, T.; Roy, P. Phys. Lett. A 2007, 361, 55. https://doi.org/10.1016/j.physleta.2006.09.032
  24. Chen. G.; Chen, Z.; Xuan, P. Phys. Lett. A 2006, 352, 317. https://doi.org/10.1016/j.physleta.2005.12.024
  25. Diao, Y.; Yi, L.; Jia, C. Phys. Lett. A 2004, 332, 157. https://doi.org/10.1016/j.physleta.2004.09.051
  26. Qiang, W. C.; Zhou, R. S.; Gao, Y. Phys. Lett. A 2007, 371, 201. https://doi.org/10.1016/j.physleta.2007.04.109
  27. Znojil, M. J. Phys. A: Math. Gen. 2004, 37, 9557. https://doi.org/10.1088/0305-4470/37/40/016
  28. Sun, H. Phys. Lett. A 2009, 374, 116. https://doi.org/10.1016/j.physleta.2009.11.003
  29. Sun, H. Bull. Korean Chem. Soc. 2010, 31, 3573. https://doi.org/10.5012/bkcs.2010.31.12.3573
  30. Cooper, F.; Khare, A.; Sukhatme, U. Phys. Rep. 1995, 251, 267. https://doi.org/10.1016/0370-1573(94)00080-M
  31. Cooper, F.; Ginocchio, J. N. Phys. Rev. D 1987, 36, 2458. https://doi.org/10.1103/PhysRevD.36.2458
  32. Yin, C.; Cao, Z.; Shen, Q. Ann. Phys. 2010, 325, 528. https://doi.org/10.1016/j.aop.2009.11.004
  33. Hruska, M.; Keung, W. Y.; Sukhatme, U. Phys. Rev. A 1997, 55, 3345. https://doi.org/10.1103/PhysRevA.55.3345

Cited by

  1. Molecular spinless energies of the improved Tietz potential energy model vol.128, pp.11, 2013, https://doi.org/10.1140/epjp/i2013-13139-4
  2. Solutions of the Klein-Gordon equation with the improved Rosen-Morse potential energy model vol.128, pp.7, 2013, https://doi.org/10.1140/epjp/i2013-13069-1
  3. Molecular Spinless Energies of the Morse Potential Energy Model vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3425
  4. Exactly Solvable Potentials Derived from SWKB Quantization vol.35, pp.3, 2011, https://doi.org/10.5012/bkcs.2014.35.3.805
  5. Molecular Spinless Energies of the Modified Rosen-Morse Potential Energy Model vol.35, pp.9, 2011, https://doi.org/10.5012/bkcs.2014.35.9.2699
  6. Analytical solutions of fractional Schrödinger equation and thermal properties of Morse potential for some diatomic molecules vol.36, pp.7, 2011, https://doi.org/10.1142/s0217732321500413
  7. Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model vol.119, pp.23, 2011, https://doi.org/10.1080/00268976.2021.1956615