DOI QR코드

DOI QR Code

Silver Immobilization on Honeycomb-patterned Polyvinypyrrolidone thin Films via an Electroless Process

  • Kim, Bong-Seong (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Kim, Won-Jung (Department of Chemistry and Institute of Basic Science, Inje University) ;
  • Kim, Young-Do (Department of Environmental Science and Engineering, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Basic Science, Inje University)
  • Received : 2011.08.08
  • Accepted : 2011.10.02
  • Published : 2011.12.20

Abstract

Honeycomb-patterned polyvinypyrrolidone (PVP) thin films coated with nanometer-sized silver particles were prepared using honeycomb-patterned polystyrene (PS) template films fabricated by casting a polystyrene solution under humid condition. Silver was first metallized on the patterned PS films via silver nitrate ($AgNO_3$) reduction using tetrathiafulvalene (TTF) and a small amount of PVP as the reductant and dispersing agent, respectively. The effects of $AgNO_3$, TTF, and PVP solution concentrations during the reduction process in acetonitrile were determined to obtain a uniform silver-coated honeycomb-patterned PS film. Second, the silver-metallized patterned porous PS films were filled with high PVP concentration solutions via the spincoating process. Silver-coated patterned PVP films were obtained by peeling off the PVP layer from the template PS film after drying. The results show that the honeycomb-patterned PVP films uniformly coated with silver particles are conveniently obtained using the silver-coated patterned PS template, although the direct fabrication of these films using water droplets under humid conditions was not feasible because of the water solubility of PVP.

Keywords

References

  1. Yang, B.; Yoon, K.; Chung, K. Mater. Chem. Phys. 2004, 83, 334. https://doi.org/10.1016/j.matchemphys.2003.10.003
  2. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  3. Son, W. Macromol. Rapid. Commun. 2004, 25, 1632. https://doi.org/10.1002/marc.200400323
  4. Doty, R. C. Chem. Mater. 2005, 17, 4630. https://doi.org/10.1021/cm0508017
  5. Liu, H.; Ge, X.; Ni, Y.; Ye, Q.; Zhang, Z. Radiat. Phys. Chem. 2001, 61, 89. https://doi.org/10.1016/S0969-806X(00)00383-2
  6. Ghosh, K.; Maiti, S. J. Appl. Polym. Sci. 1966, 60, 323.
  7. Wang, D. Y.; Caruso, F. Adv. Mater. 2001, 13, 350. https://doi.org/10.1002/1521-4095(200103)13:5<350::AID-ADMA350>3.0.CO;2-X
  8. Wilbur, J. L.; Biebuyck, H.; MacDonald, J. C.; Whitesides, G. M. Langmuir 1995, 11, 825. https://doi.org/10.1021/la00003a025
  9. Xu, S.; Liu, G. Y. Langmuir 1997, 13, 127. https://doi.org/10.1021/la962029f
  10. Meng, Q. B.; Fu, C. H.; Einaga, Y.; Gu, Z. Z.; Fujishima, A.; Sato, O. Chem. Mater. 2002, 14, 83. https://doi.org/10.1021/cm0101576
  11. Chen, Y.; Pepin, A. Electrophoresis 2001, 22, 187. https://doi.org/10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
  12. Nishikawa, T.; Ookura, R.; Nishida, J.; Arai, K.; Hayashi, J.; Kurono, N.; Sawadaishi, T.; Hara, M.; Shimomura, M. Langmuir 2002, 18, 5734. https://doi.org/10.1021/la011451f
  13. Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Science 2001, 292, 79. https://doi.org/10.1126/science.1057887
  14. Ostuni, E.; Chen, C. S.; Ingber, D. E.; Whitesides, G. M. Langmuir 2001, 17, 2828. https://doi.org/10.1021/la001372o
  15. Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53. https://doi.org/10.1038/35003523
  16. Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. J. Am. Chem. Soc. 2002, 124, 9382. https://doi.org/10.1021/ja0203972
  17. Widawski, G.; Rawiso, M.; François, B. Nature 1994, 369, 387. https://doi.org/10.1038/369387a0
  18. Francois, B.; Pitois, O.; François, J. Adv. Mater. 1995, 7, 1041. https://doi.org/10.1002/adma.19950071217
  19. Karthaus, O.; Maruyama, N.; Cieren, X.; Shimomura, M.; Hasegawa, H.; Hashimoto, T. Langmuir 2000, 16, 6071. https://doi.org/10.1021/la0001732
  20. Li, J.; Shacham-Diamand, Y.; Mayer, J. W. Mater. Sci. Rep. 1992, 9, 1. https://doi.org/10.1016/0920-2307(92)90011-O
  21. Yabu, H.; Hirai, Y.; Shimomura, M. Langmuir 2006, 22, 9760. https://doi.org/10.1021/la062228r
  22. Akamatsu, K.; Takei, S.; Mizuhata, M.; Kajinami, A. Thin Solid Films 2000, 359, 55. https://doi.org/10.1016/S0040-6090(99)00684-7
  23. Wang, X.; Itoh, H.; Naka, K.; Chujo, Y. Langmuir 2003, 19, 6242. https://doi.org/10.1021/la027070z
  24. Kim, B. S.; Basavaraja, C.; Jo, E. A.; Kim, D. G.; Huh, D. S. Polymer 2010, 51, 3365. https://doi.org/10.1016/j.polymer.2010.05.050
  25. Yabu, H.; Shimomura, M. Langmuir 2006, 22, 4992. https://doi.org/10.1021/la053486b
  26. Roncali, J. J. Mater. Chem. 1997, 7, 2307. https://doi.org/10.1039/a703956e

Cited by

  1. Preparation and characterization of smart hydrogel nanocomposites sensitive to oxidation–reduction vol.70, pp.1, 2013, https://doi.org/10.1007/s00289-012-0825-8
  2. Adsorption–desorption oscillations of nanoparticles on a honeycomb-patterned pH-responsive hydrogel surface in a closed reaction system vol.16, pp.46, 2014, https://doi.org/10.1039/C4CP03083D
  3. 은 나노입자가 분산된 Honeycomb-patterned 수지 합성에 대한 연구 vol.18, pp.2, 2017, https://doi.org/10.5762/kais.2017.18.2.711