DOI QR코드

DOI QR Code

A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF-α by Using Modified Magnetic Particles under Applied Magnetic Field

  • Bahk, Yeon-Kyoung (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Hyung-Hoon (School of Mechanical Engineering, Pusan National University) ;
  • Park, Deog-Su (Institute of BioPhysio Sensor Technology, Pusan National University) ;
  • Chang, Seung-Cheol (Institute of BioPhysio Sensor Technology, Pusan National University) ;
  • Go, Jeung-Sang (School of Mechanical Engineering, Pusan National University)
  • Received : 2011.07.06
  • Accepted : 2011.10.01
  • Published : 2011.12.20

Abstract

This study introduces a new concept for a simple, efficient and cheap sensitivity amplification of a Quartz Crystal Microbalance (QCM) based immunosensor system for the detection of tumor necrosis factor-alpha (TNF-${\alpha}$, TNF) by using an in-built magnetic system. The frequency shift due to the applied magnetic field was successfully observed on magnetic particles labeled detection antibodies, anti-human TNF-${\alpha}$, which were bound to the immunologically captured TNF-${\alpha}$ on the gold coated quartz crystals. In the present system, the magnitude of frequency shift depends on both the strength of magnetic field and the amount of target antigen applied. Significant signal amplification was observed when the additional built-in residual stress generated by the modified magnetic particles under the magnetic field applied. Used in conjunction with a sandwich type non-competitive immunoassay format, the lower detection limit was calculated to be 25 $ngmL^{-1}$ and showed good linearity up to TNF-${\alpha}$ concentrations as high as 2.0 ${\mu}gmL^{-1}$. The sensitivity, most importantly, was improved up to 4.3 times compared with the same QCM system which was used only an antigen-antibody binding without additional magnetic amplification.

Keywords

References

  1. Beutler, B.; Cerami, A. Biochemistry-Us 1988, 27, 7575. https://doi.org/10.1021/bi00420a001
  2. Vilcek, J.; Lee, T. H. J. Biol. Chem. 1991, 266, 7313.
  3. Kriegler, M.; Perez, C.; Defay, K.; Albert, I.; Lu, S. D. Cell 1988, 53, 45. https://doi.org/10.1016/0092-8674(88)90486-2
  4. Granger, G. A.; Shacks, S. J.; Williams, T. W.; Kolb, W. P. Nature 1969, 221, 1155. https://doi.org/10.1038/2211155a0
  5. Mohan, N.; Edwards, E. T.; Cupps, T. R.; Oliverio, P. J.; Siegel, J. N. Arthritis Rheum 2000, 43, S228.
  6. Chan, F. K. M.; Siegel, R. M.; Lenardo, M. J. Immunity 2000, 13, 419. https://doi.org/10.1016/S1074-7613(00)00041-8
  7. Siegel, R. M.; Chan, F. K. M.; Chun, H. J.; Lenardo, M. J. Nat. Immunol. 2000, 1, 469. https://doi.org/10.1038/82712
  8. Maini, R. N.; Taylor, P. C. Annu. Rev. Med. 2000, 51, 207. https://doi.org/10.1146/annurev.med.51.1.207
  9. Pasparakis, M.; Alexopoulou, L.; Episkopou, V.; Kollias, G. J. Exp. Med. 1996, 184, 1397. https://doi.org/10.1084/jem.184.4.1397
  10. Michelson, A. D. Blood 1996, 87, 4925.
  11. Spangler, B. D.; Wilkinson, E. A.; Murphy, J. T.; Tyler, B. J. Anal. Chim. Acta 2001, 444, 149. https://doi.org/10.1016/S0003-2670(01)01156-4
  12. Baker, K. N.; Rendall, M. H.; Patel, A.; Boyd, P.; Hoare, M.;Freedman, R. B.; James, D. C. Trends Biotechnol. 2002, 20, 149. https://doi.org/10.1016/S0167-7799(01)01914-X
  13. Bleve, G.; Rizzotti, L.; Dellaglio, F.; Torriani, S. Appl. Environ. Microb. 2003, 69, 4116. https://doi.org/10.1128/AEM.69.7.4116-4122.2003
  14. Ioachim, H. L.; Medeiros, L. J., 4th ed.; Lippincott Williams and Wilkins: Philadelphia, 2008.
  15. Battaglia, T. M.; Masson, J. F.; Sierks, M. R.; Beaudoin, S. P.; Rogers, J.; Foster, K. N.; Holloway, G. A.; Booksh, K. S. Anal. Chem. 2005, 77, 7016. https://doi.org/10.1021/ac050568w
  16. Kurita, R.; Arai, K.; Nakamoto, K.; Kato, D.; Niwa, O. Anal. Chem. 2010, 82, 1692. https://doi.org/10.1021/ac902045y
  17. Choi, C. J.; Belobraydich, A. R.; Chan, L. L.; Mathias, P. C.; Cunningham, B. T. Anal. Biochem. 2010, 405, 1. https://doi.org/10.1016/j.ab.2010.06.009
  18. Kramer, P. M.; Kess, M.; Kremmer, E.; Schulte-Hostede, S. Analyst 2011, 136, 692. https://doi.org/10.1039/c0an00699h
  19. La Belle, J. T.; Demirok, U. K.; Patel, D. R.; Cook, C. B. Analyst 2011, 136, 1496. https://doi.org/10.1039/c0an00923g
  20. Nunalee, F. N.; Shull, K. R. Langmuir 2004, 20, 7083. https://doi.org/10.1021/la049015r
  21. Tilmans, H. A. C.; Legtenberg, R. Sensor. Actuat. a-Phys. 1994, 45, 67. https://doi.org/10.1016/0924-4247(94)00813-2
  22. Pandey, A. K.; Venkatesh, K. P.; Pratap, R. Sadhana-Acad. P. Eng. S. 2009, 34, 651.
  23. Pilkey, W. D. Formulas for Stress, Strain, and Structural Matrices, 2nd ed.; John Wiley & Sons: New York, 2005.
  24. Pan, Y. L.; Guo, M. L.; Nie, Z.; Huang, Y.; Pan, C. F.; Zeng, K.; Zhang, Y.; Yao, S. Z. Biosens. Bioelectron. 2010, 25, 1609. https://doi.org/10.1016/j.bios.2009.11.022
  25. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Chem. Rev. 2008, 108, 2064. https://doi.org/10.1021/cr068445e
  26. Vaughan, R. D.; O'Sullivan, C. K.; Guilbault, G. G. Enzyme Microb. Tech. 2001, 29, 635. https://doi.org/10.1016/S0141-0229(01)00449-5
  27. Michalzik, M.; Wendler, J.; Rabe, J.; Buttgenbach, S.; Bilitewski, U. B. Sensor Actuat. B-Chem. 2005, 105, 508. https://doi.org/10.1016/j.snb.2004.07.012
  28. Liu, Y.; Zhang, W.; Yu, X.; Zhang, H. W.; Zhao, R.; Shangguan, D.; Li, Y.; Shen, B. F.; Liu, G. Q. Sensor Actuat. B-Chem. 2004, 99, 416. https://doi.org/10.1016/j.snb.2003.12.010
  29. Savitzky, A.; Golay, M.J.E. Anal. Chem. 1964, 36, 1627. https://doi.org/10.1021/ac60214a047
  30. Delamarche, E.; Cesaro-Tadic, S.; Dernick, G.; Juncker, D.; Buurman, G.; Kropshofer, H.; Michel, B.; Fattinger, C. Lab. Chip. 2004, 4, 563-569. https://doi.org/10.1039/b408964b
  31. Wild, D. The Immunoassay Handbook, 2nd ed.; Nature Publishing Group: New York, 2001.

Cited by

  1. Nanoparticle-based immunoassays in the biomedical field vol.138, pp.4, 2013, https://doi.org/10.1039/c2an36500f
  2. Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications vol.10, pp.46, 2018, https://doi.org/10.1039/C8NR04315A
  3. An Ultraflexible and Stretchable Aptameric Graphene Nanosensor for Biomarker Detection and Monitoring vol.29, pp.44, 2011, https://doi.org/10.1002/adfm.201905202
  4. Sensing Inflammation Biomarkers with Electrolyte‐Gated Organic Electronic Transistors vol.10, pp.20, 2021, https://doi.org/10.1002/adhm.202100955
  5. Cerium oxide nanofiber-based electrochemical immunosensor for detection of sepsis in biological fluid vol.25, pp.10, 2011, https://doi.org/10.1007/s10008-021-05042-5