DOI QR코드

DOI QR Code

Quasiclassical Trajectory Calculations for the Reaction Ne + H2+ → NeH+ + H

  • Wang, Yuliang (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Tian, Baoguo (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Qu, Liangsheng (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Chen, Juna (Department of Basic Sciences, Naval Aeronautical and Astronautical University) ;
  • Li, Hui (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
  • Received : 2011.06.29
  • Accepted : 2011.09.28
  • Published : 2011.12.20

Abstract

Quasiclassical trajectory (QCT) calculations of Ne + ${H_2}^+$ reaction have been carried out on the adiabatic potential energy surface of the ground state $1^2$ A'. The reaction probability of the title reaction for J = 0 has been calculated, and the QCT result is consistent with the previous quantum mechanical wave packet result. Quasiclassical trajectory calculations of the four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r$, ${\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. Due to the well in $1^2$ A' PES, the reagent vibrational excitation has greater influence on the polarization of the product rotational angular momentum vectors j' than the collision energy.

Keywords

References

  1. Bilotta, R. M.; Farrar, J. M. J. Chem. Phys. 1981, 75, 1776. https://doi.org/10.1063/1.442256
  2. Van Pijkeren, D.; Boltjes, E.; Eck, J. V.; Niehaus, A. Chem. Phys. 1984, 91, 293. https://doi.org/10.1016/0301-0104(84)80063-4
  3. Herman, Z.; Koyano, I. J. Chem. Soc., Faraday Trans. 2 1987, 83, 127.
  4. Zhang, T.; Qian, X.-M.; Tang, X. N.; Ng, C. Y.; Chiu, Y.; Levandier, D. J.; Miller, J. S.; Dressler, R. A. J. Chem. Phys. 2003, 119, 10175. https://doi.org/10.1063/1.1616916
  5. Dressler, R. A.; Chiu, Y.; Levandier, D. J.; Tang, X. N.; Hou, Y.; Chang, C.; Houchins, C.; Xu, H.; Ng, C. Y. J. Chem. Phys. 2006, 125, 132306. https://doi.org/10.1063/1.2207609
  6. Gonzalez-Sanchez, L.; Gomez-Carrasco, S.; Aguado, A. J. Chem. Phys. 2004, 121, 309. https://doi.org/10.1063/1.1756581
  7. Gomez-Carrasco, S.; Roncero, O.; Gonzalez-Sanchez, L. J. Chem. Phys. 2005, 123, 114310. https://doi.org/10.1063/1.2046669
  8. Kuntz, P. J.; Roach, A. C. J. Chem. Soc., Faraday Trans. 2 1972, 68, 259. https://doi.org/10.1039/f29726800259
  9. Gonzalez, M.; Blasco, R. M.; Gimenez, X.; Aguilar, A. Chem. Phys. 1996, 209, 355. https://doi.org/10.1016/0301-0104(96)00105-X
  10. Huarte-Larranaga, F.; Gimenez, X.; Lucas, J. M.; Aguilar, A.; Launay, J.-M. J. Phys. Chem. A 2000, 104, 10227. https://doi.org/10.1021/jp000793b
  11. Pendergast, P.; Heck, J. M.; Hayes, E. F.; Jaquet, R. J. Chem. Phys. 1993, 98, 4543. https://doi.org/10.1063/1.465015
  12. Urban, J.; Jaquet, R.; Staemmler, V. Int. J. Quantum Chem. 1990, 38, 339.
  13. Kress, J. D.; Walker, R. B.; Hayes, E. F.; Pendergast, P. J. Chem. Phys. 1994, 100, 2728. https://doi.org/10.1063/1.466467
  14. Huarte-Larranaga, F.; Gimenez, X.; Lucas, J. M.; Aguilar, A.; Launay, J.-M. Phys. Chem. Chem. Phys. 1999, 1, 1125. https://doi.org/10.1039/a808552h
  15. Gilibert, M.; Blasco, R. M.; Gonzalez, M.; Gimenez, X.; Aguilar, A.; Last, I.; Baer, M. J. Phys. Chem. A. 1997, 101, 6821. https://doi.org/10.1021/jp9711656
  16. Gilibert, M.; Gimenez, X.; Huarte-Larranaga, F.; Gonzalez, M.; Aguilar, A.; Last, I.; Baer, M. J. Chem. Phys. 1999, 110, 6278. https://doi.org/10.1063/1.478532
  17. Han, K. L.; He, G. Z.; Lou, N. Q. J. Chem. Phys. 1996, 105, 8699. https://doi.org/10.1063/1.472651
  18. Mayneris, J.; Sierra, J. D.; Gonzalez, M. J. Chem. Phys. 2008, 128, 194307. https://doi.org/10.1063/1.2917253
  19. Lv, S. J.; Zhang, P. Y.; Han, K. L.; He, G. Z. J. Chem. Phys. 2010, 132, 014303. https://doi.org/10.1063/1.3277120
  20. Aguado, A.; Paniagua, M. J. Chem. Phys. 1992, 96, 1265. https://doi.org/10.1063/1.462163
  21. Chen, M. D.; Han, K L.; Lou, N. Q. J. Chem. Phys. 2003, 118, 4463. https://doi.org/10.1063/1.1545112
  22. Wang, M. L.; Han, K. L.; He, G. Z. J. Chem. Phys. 1998, 109, 5446. https://doi.org/10.1063/1.476522
  23. Chen, M. D.; Han, K. L.; Lou, N. Q. Chem. Phys. Lett. 2002, 357, 483. https://doi.org/10.1016/S0009-2614(02)00585-7
  24. Wrede, E.; Schnieder, L.; Welge, K. H.; Aoiz, F. J.; Banares, L.; Castillo, J. F.; Martinez-Haya, B.; Herrero, V. J. J. Chem. Phys. 1999, 110, 9971. https://doi.org/10.1063/1.478870
  25. Aoiz, F. J.; Brouard, M.; Enriquez, P. A. J. Chem. Phys. 1996, 105, 4964. https://doi.org/10.1063/1.472346

Cited by

  1. vol.86, pp.4, 2013, https://doi.org/10.1246/bcsj.20120109