DOI QR코드

DOI QR Code

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Yu, Seung-Ho (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Song, Min-Seob (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Kim, Sung-Soo (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Cho, Won-Il (Energy Storage Research Center, Korea Institute of Science and Technology)
  • Received : 2011.08.09
  • Accepted : 2011.10.01
  • Published : 2011.12.20

Abstract

The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

Keywords

References

  1. Dominko, R.; Bele, M.; Gaberscek, M.; Meden, A.; Remska, M.; Jamnik, J. J. Electrochem. Commun. 2006, 8, 217. https://doi.org/10.1016/j.elecom.2005.11.010
  2. Nyten, A.; Abouimrane, A.; Armand, M.; Gustaffson, T.; Thomas, J. O. J. Electrochem. Commun. 2005, 7, 156. https://doi.org/10.1016/j.elecom.2004.11.008
  3. Chebiam, R. V.; Prado, F.; Manthiram, A. Chem. Mater. 2001, 12, 2951.
  4. Venkatraman, S.; Manthiram, A. Chem. Mater. 2002, 14, 3907. https://doi.org/10.1021/cm0203621
  5. Kim, J.; Noh, M.; Kim, J. H. J. Electrochem. Soc. 2005, 152, A1142. https://doi.org/10.1149/1.1896526
  6. Dominko, R. J. Power Sources 2008, 184, 462. https://doi.org/10.1016/j.jpowsour.2008.02.089
  7. Dominko, R.; Conte, D. E.; Hanzel, D.; Gaberscek, M.; Jamnik, J. J. Power Sources 2008, 178, 842. https://doi.org/10.1016/j.jpowsour.2007.07.064
  8. Belharouak, I.; Abouimrane, A.; Amine, K. J. Phys. Chem. 2009, 113, 20733.
  9. Kokalj, A.; Dominko, R.; Mali, G.; Meden, A.; Gaberscek, M. J. Jamnik, Chem. Mater. 2007, 19, 3633. https://doi.org/10.1021/cm063011l
  10. Lyness, C.; Delobel, B.; Armstron, A. R.; Bruce, P. G. Chem. Commun. 2007; p 4890.
  11. Nishimura, A. I.; Hayese, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. J. Am. Chem. Soc. 2008, 130(40), 13212. https://doi.org/10.1021/ja805543p
  12. Muraliganth, T.; Stroukoff, K. R.; Manthiram, A. Chem. Mater. 2010, 22, 5754. https://doi.org/10.1021/cm102058n
  13. Gong, Z. L.; Li, Y. X.; He, G. N.; Yang, Y. Electrochem. Solid State Lett. 2008, 11(5), A60. https://doi.org/10.1149/1.2844287
  14. Deng, C.; Zhang, S.; Fu, B. L.; Yang, S. Y.; Ma, L. Mater. Chem. Phys. 2010, 120, 14. https://doi.org/10.1016/j.matchemphys.2009.11.027
  15. Nyten, A.; Kamali, S.; Haggstrom, L.; Gustaffson, T.; Thomas, J. O. Mater. Chem. 2006, 16, 2266. https://doi.org/10.1039/b601184e

Cited by

  1. Advanced Electrodes for High Power Li-ion Batteries vol.6, pp.3, 2013, https://doi.org/10.3390/ma6031028
  2. cathode materials for lithium-ion batteries: a review vol.5, pp.22, 2017, https://doi.org/10.1039/C7TA00034K
  3. Study of the Chemical Bond in Li2 – yFe1 – xMnxSiO4 (x = 0.0, 0.5, 1.0; y = 0.0, 2.0) by the Method of Computer Simulation vol.44, pp.5, 2018, https://doi.org/10.1134/S1087659618050024
  4. Nonstoichiometry and Defects in Hydrothermally Synthesized ε-LiVOPO4 vol.2, pp.7, 2011, https://doi.org/10.1021/acsaem.9b00448