DOI QR코드

DOI QR Code

Bio-functionalized Gold Nanoparticles for Surface-Plasmon- Absorption-Based Protein Detection

  • Kim, Wan-Joong (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Choi, Soo-Hee (Biosensor Research Team, Electronics and Telecommunications Research Institute) ;
  • Rho, Young-S. (Department of Chemistry, Chonbuk National University) ;
  • Yoo, Dong-Jin (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University)
  • Received : 2011.08.01
  • Accepted : 2011.08.31
  • Published : 2011.12.20

Abstract

Bio-functionalized gold nanoparticles (AuNPs), which bio-specifically interact with biotin-(strept)avidin, were investigated in this study. AuNPs were functionalized with a synthetically-provided biotin-linked thiol (BLT), which was synthesized by amidation of the active ester of biotin with 2-mercaptoethylamine. The BLT-attached AuNP was bio-specific for streptavidin, making it potentially useful for biosensor applications. To test the bio-specific interactions, the colors, absorption spectra and TEM images were investigated for proteins such as streptavidin, cytochrome C, myoglobin and hemoglobin. The colors and absorption spectra changed when streptavidin was added to the BLT-attached AuNP solution. However, the color and spectra did not change when the other proteins were added to the same solution. These results show that the AuNPs provided a colloidal solution with excellent stability and highly selective absorption characteristics for streptavidin as a target molecule. Proteins were also screened in order to identify a general strategy for the use of optical biosensing proteins based on AuNPs. In addition, TEM images confirmed that streptavidin led the BLT-attached AuNPs to aggregate or precipitate.

Keywords

References

  1. Shipway, A. N.; Katz, E.; Willner, I. Chem Phys Chem. 2000, 1, 18. https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
  2. Storhoff, J. J.; Mirkin, C. A. Chem. Rev. 1999, 99, 1849. https://doi.org/10.1021/cr970071p
  3. Niemeyer, C. M. Angew. Chem. Int. Ed. 2001, 40, 4128. https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  4. Mann, S.; Shenton, W.; Li, M.; Connolly, S.; Fitzmaurice, D. Adv. Mater. 2000, 12, 147. https://doi.org/10.1002/(SICI)1521-4095(200001)12:2<147::AID-ADMA147>3.0.CO;2-U
  5. Nam, J.-M.; Park, S.-J.; Mirkin, C. A. J. Am. Chem. Soc. 2002, 124, 3820. https://doi.org/10.1021/ja0178766
  6. Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914. https://doi.org/10.1021/ja037969i
  7. Sastry, M.; Lala, N.; Patil, V.; Chavan, S. P.; Chittiboyina, A. G. Langmuir 1998, 14, 4138. https://doi.org/10.1021/la9800755
  8. Connolly, S.; Fitzmaurice, D. Adv. Mater. 1999, 11, 1202. https://doi.org/10.1002/(SICI)1521-4095(199910)11:14<1202::AID-ADMA1202>3.0.CO;2-H
  9. Connolly, S.; Rao, S. N.; Fitzmaurice, D. J. Phys. Chem. B 2000, 104, 4765. https://doi.org/10.1021/jp992842u
  10. Cobbe, S.; Connolly, S.; Ryan, D.; Nagle, L.; Eritja, R.; Fitzmaurice, D. J. Phys. Chem. B 2003, 107, 470. https://doi.org/10.1021/jp021503p
  11. Niemeyer, C. M.; Bürger, W.; Peplies, J. Angew. Chem. Int. Ed. 1998, 37, 2265. https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F
  12. Shenton, W.; Davis, S. A.; Mann, S. Adv. Mater. 1999, 11, 449. https://doi.org/10.1002/(SICI)1521-4095(199904)11:6<449::AID-ADMA449>3.0.CO;2-A
  13. Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc. 2002, 124, 3508. https://doi.org/10.1021/ja0200903
  14. Liu, J.; Lu, Y. J. Am. Chem. Soc. 2003, 125, 6642. https://doi.org/10.1021/ja034775u
  15. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 116, 801. https://doi.org/10.1021/ja00081a064
  16. Reetz, M. T.; Winter, M.; Tesche, B. Chem. Commun. 1997, 147.
  17. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998, 10, 922. https://doi.org/10.1021/cm970702w
  18. Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 1999, 121, 4914. https://doi.org/10.1021/ja9905288
  19. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735. https://doi.org/10.1021/ac00100a008
  20. Frens, G. Nat. Phys. Sci. 1973, 241, 20. https://doi.org/10.1038/physci241020a0
  21. Sauthier, M. L.; Carroll, R. L.; Gorman, C. B.; Franzen, S. Langmuir 2002, 18, 1825. https://doi.org/10.1021/la0112763
  22. Loweth, C. J.; Caldwell, W. B.; Peng, X.; Alivisatos, A. P.; Schultz, P. G. Angew. Chem. Int. Ed. 1999, 38, 1808. https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1808::AID-ANIE1808>3.0.CO;2-C
  23. Schmid, G.; Lehnert, A. Angew. Chem. Int. Ed. 1989, 28, 780. https://doi.org/10.1002/anie.198907801
  24. Sweryda-Krawiec, B.; Dvaraj, H.; Jacob, G.; Hickman, J. J. Langmuir 2004, 20, 2054. https://doi.org/10.1021/la034870g
  25. Nakanishi, K.; Sakiyama, T.; Imamura, K. J. Biosci. Bioeng. 2001, 91, 233.
  26. Fang, F.; Szleifer, I. Biophys. J. 2001, 80, 2568. https://doi.org/10.1016/S0006-3495(01)76228-5

Cited by

  1. Shape Transformation of Gold Nanoparticles from Octahedron to Cube Depending on in situ Seed-Growth Time vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2243
  2. Portable point-of-care diagnostic devices vol.8, pp.44, 2016, https://doi.org/10.1039/C6AY02158A
  3. Universal Biotin–PEG-Linked Gold Nanoparticle Probes for the Simultaneous Detection of Nucleic Acids and Proteins vol.28, pp.1, 2017, https://doi.org/10.1021/acs.bioconjchem.6b00529