Communications

Asymmetric Organocatalytic Friedel-Crafts Alkylation–Cyclization Cascade Reaction of Indoles with *o*-Hydroxyaromatic α,β-Unsaturated Aldehydes

Sung Hyuk Gwon, Shinae Kim, and Sung-Gon Kim*

Department of Chemistry, College of Natural Science, Kyonggi University, Suwon 443-760, Korea. *E-mail: sgkim123@kgu.ac.kr Received October 7, 2011, Accepted October 12, 2011

Key Words : Organocatalysis, Asymmetric catalysis, Friedel-Crafts alkylation, Indole, Chroman

The indole molecular scaffold is the most widely distributed heterocycle found in nature.¹ In addition, substituted indoles are important in drug discovery because of their presence in numerous biologically active natural products and their high-affinity binding to many receptors.² Functionalization of indole rings is therefore an important branch of organic chemistry and various synthetic approaches have been reported.³ Friedel-Crafts alkylation is one of the most powerful methods for the construction of substituted indole ring especially when applied to catalytic asymmetric transformations.⁴ Nowadays, asymmetric organocatalysis has been new paradigm for the catalytic enantioselective Friedel-Crafts alkylation of indoles.⁵

As part of our continuing interest in exploring the organocatalytic reaction using *o*-hydroxyaromatic α,β -unsaturated aldehydes as an electrophile,⁶ we recently discovered that imidazolidinone organocatalysts are efficient for the Friedel-Crafts alkylation of indoles with *o*-hydroxyaromatic α,β unsaturated aldehydes. During this reaction, the indole reacts through conjugate addition with *o*-hydroxyaromatic α,β unsaturated aldehyde to give a chiral β -substituted aldehyde, which can be hemiacetalized to a chiral 4-substituted chroman-2-ol (Scheme 1). Here we report our preliminary results from this discovery. The obtained chroman-2-ol can easily be transform to chroman and derivatives that are ubiquitously found in numerous biologically active natural products. Molecules containing chroman scaffolds exhibit a

Scheme 1. Organocatalytic Friedel-Crafts alkylation-cyclization cascade reactions of indoles with *o*-hydroxyaromatic α , β -unsaturated aldehydes.

broad range of biological functions, such as antiviral, antitumor, and antimicrobial activities.⁷ Their importance has led to many methods being developed for their synthesis.⁸

We initially investigated the reaction of *N*-methylindole (**2a**) with *o*-hydroxycinnamaldehyde (**3a**) in the presence of readily available diphenylprolinol trimethylsilyl ether (**1a**, 20 mol %) in CH₂Cl₂ at 0 °C (Table 1).⁹ However, the reaction did not produced corresponding chroman-2-ol **4a**, despite the starting material **3a** being completely disappeared (entry 1). Next, we examined MacMillan imidazolidinone catalysts,¹⁰ which have been used in many Friedel-Crafts alkylations of α , β -unsaturated aldehydes, in this reaction. Imidazolidinone catalyst **1b** with CF₃CO₂H additive pro-

Table 1. Asymmetric Friedel-Crafts alkylation of *N*-methylindole (**2a**) with *o*-hydroxycinnamaldehyde (**3a**) by organocatalyst^{*a*}

Catalyst

	CTN 2a	+)	CHO (20 m) add (20 m) (20	litive nol %)		H
Entry	Catalyst	Additive	Solvent	Time (h)) Yield ^b (%)	er ^c
1	1a	PhCO ₂ H	CH ₂ Cl ₂	48	_d	-
2	1b	CF ₃ CO ₂ H	CH_2Cl_2	24	35	51:49
3	1b	CF ₃ CO ₂ H	Toluene	48	52	52:48
4	1b	CF ₃ CO ₂ H	CH ₃ CN	48	82	54:46
5	1c	CF ₃ CO ₂ H	CH ₃ CN	116	91	54:46
6	1b	HCl	CH ₃ CN	48	_d	-
7	1c	HCl	CH ₃ CN	48	_d	-
8	1d	CF ₃ CO ₂ H	CH ₃ CN	24	75	60:40
9	1d	CF ₃ CO ₂ H	EtOAc	48	86	61:39
10	1d	CF ₃ CO ₂ H	THF	36	82	63:37
11	1d	CF ₃ CO ₂ H	1,4-Dioxane	100	53	65:35
12	1d	CCl_3CO_2H	THF	7 days	70	70:30
13	1d	ClCHCO ₂ H	THF	7 days	61	73:27

^{*a*}Unless otherwise specified, the reaction was carried out in solvent (0.3 M) with 1.3 equiv of *N*-methylindole (2a) relative to the *o*-hydroxycinnamaldehyde (3a) in the presence of 20 mol % catalyst and additive. ^{*b*}Isolated yield after chromatographic purification. ^{*c*}Determined by HPLC using chiral column AD-H after oxidation. ^{*d*}The desired product was not obtained.

Table 2. Asymmetric organocatalytic Friedel-Crafts alkylationcyclization reaction of *o*-hydroxyaromatic α , β -unsaturated aldehydes to representative indoles

×C	1 + 2 + 2		>СНО ОН в	1d (20 mol %) Cl ₂ CHCO ₂ H (20 mol %) 0 °C, THF 7 days		D-х І _{он}
Entry	R	Х	Y	Yield $(\%)^a$	er^b	dr ^c
1	Me	Н	Н	61	73:27	3:1
2	allyl	Н	Н	40	70:30	3:1
3	Bn	Н	Н	53	67:33	3:1
4^d	Н	Н	Н	65	67:33	6:1
5	Bn	OMe	Н	55	81:19	3:1
6	Bn	OBn	Н	63	78:22	3:1
7	Bn	Н	4-Me	46	58:42	4:1
8	Bn	Н	4-OMe	32	61:39	3:1
9	Bn	Н	5-OMe	36	63:37	3:1
10	Bn	Н	4-Cl	69	71:29	4:1
11	Bn	Н	4-Br	60	69:31	4:1
12	Bn	Н	4-NO ₂	85	74:26	5:1

^aIsolated yield after chromatographic purification. ^bDetermined by HPLC using chiral column AD-H after oxidation. ^cDetermined by 1H NMR analysis. ^dTFA was used as additive.

duced the corresponding chroman-2-ol **4a** in moderate yield with poor level of enantioselectivity (entry 2). This result led to other imidazolidinone catalysts, acid additives and solvents being tested to improve the reactivity and enantioselectivity. The tryptophan-derived imidazolidinone catalyst **1d** showed increased reactivity and enantioselectivity (entry 8).

After the reaction conditions were optimized, we found that the superior level of enantioselectivity and yield were obtained using catalyst **1d** (20 mol %) in THF at 0 °C with Cl_2CHCO_2H (20 mol %) (61% yield, 73:27 er, entry 13).

Having established the optimal reaction conditions, we next investigated the scope of this asymmetric catalytic reaction (Table 2). Variation of the indoles' *N*-substituents (R=Me, allyl, Bn, H, entries 1-4) was shown to be possible, though with moderate yields and enantioselectivity. Incorporation of electron-donating substituent (X=OMe, OBn) at the C(5)-indole position increased enantioselectivity (81:19 er and 78:22 er, entries 5 and 6, respectively). This reaction was also compatible with a variety of *o*-hydroxyaromatic α , β -unsaturated aldehydes **3**; moderate to good yields and enantioselectivities observed in all tested cases (Table 2). In particular, 4-nitro-substituted *o*-hydroxyaromatic α , β -unsaturated aldehyde afforded a chroman-2-ol product in the best yield and with the highest regioselectivity (85% yield, 74:26 er, 5:1 dr, entry 12).

In summary, an asymmetric organocatalytic Friedel-Craft alkylation-cyclization cascade reaction of indoles with *o*-hydroxyaromatic α , β -unsaturated aldehydes was developed to produce chiral 4-substituted chroman-2-ols in moderate to good yields with up to 81:19 er. A variety of chroman derivatives can be readily obtained through the subsequent transformation of these products having the biologically

useful molecular scaffolds of indole and chroman.^{6,11} Further study of this reaction's applicability with other substrates to facilitate the preparation of more biologically relevant compounds is underway.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0005371).

References

- (a) Sundberg, R. J. *Indoles*; Academic: New York, 1996. (b) *Heterocyclic Chemistry*; Joule, J. A., Mills, K., 4th Eds.; Blackwell Science; Oxford, 2000.
- (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. *Chem. Rev.* 2003, 103, 893. (b) Chang-Fong, J.; Rangisetty, J. B.; Dukat, M.; Setola, V.; Raffay, T.; Roth, B.; Glennon, R. A. *Bioorg. Med. Chem. Lett.* 2004, 14, 1961. (c) Alves, F. R. D. S.; Barreiro, E. J.; Fraga, C. A. M. *Mini Rev. Med. Chem.* 2009, *9*, 782.
- (a) Kam, T.; Choo, Y. J. Nat. Prod. 2004, 67, 547. (b) O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532. (c) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875. (d) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.
- For reviews on asymmetric Friedel-Crafts reactions, see: (a) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550. (b) Bandini, M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199. (c) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903. (d) You, S.-L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190.
- Recent review on organocatalytic reaction of indoles: (a) Bartoli, G; Bencivenni, G; Dalpozzo, R. Chem. Soc. Rev. 2010, 39, 4449. For some selective examples: (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172. (c) Austin, J. F.; Kim, S.-G; Sinz, C. J.; Xiao, W. J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. USA 2004, 101, 5482. (d) Hong, L.; Wang, L.; Chen, C.; Zhang, B.; Wang, R. Adv. Synth. Catal. 2009, 351, 772. (e) Cai, Q.; Zhao, Z.-A.; You, S.-L. Angew. Chem., Int. Ed. 2009, 48, 7428. (f) Enders, D.; Wang, C.; Mukanova, M.; Greb, A. Chem. Commun. 2010, 46, 2447.
- (a) Choi, K.-S.; Kim, S.-G. *Tetrahedron Lett.* 2010, *51*, 5203. (b) Choi, K.-S.; Kim, S.-G. *Synthesis* 2010, 3999. (c) Lee, Y.; Kim, S.-G. *Bull. Korean Chem. Soc.* 2011, *32*, 311. (d) Lee, Y.; Seo, S. W.; Kim, S.-G. *Adv. Synth. Catal.* 2011, *353*, 2671.
- (a) Hoettecke, N.; Rotzoll, S.; Albrecht, U.; Lalk, M.; Fischer, C.; Langer, P. *Bioorg. Med. Chem.* **2008**, *16*, 10319. (b) Koufaki, M.; Kiziridi, C.; Alexi, X.; Alexi, M. N. *Bioorg. Med. Chem.* **2009**, *17*, 6432. (c) Dong, Y.; Nakagawa-Goto, K.; Lai. C.-Y.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K.-H. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4085. (d) Kraus, G. A.; Mengwasser, J.; Maury, W.; Oh, C. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 1399.
- For recent asymmetric synthesis of chroman derivatives, see: (a) Lu, H.-H.; Liu, H.; Wu, W.; Wang, X.-F.; Lu, L.-Q.; Xiao, W.-J. *Chem. Eur. J.* **2009**, *15*, 2742. (b) Yoshida, M.; Higuchi, M.; Shishido, K. Org. Lett. **2009**, *11*, 4752. (c) Zu, L.; Zhang, S.; Xie, H.; Wang, W. Org. Lett. **2009**, *11*, 1627.
- For reviews on organocatalysis based on α,α-diarylprolinol Osilyl ether, see: (a) Palomo, C.; Mielgo, A. Angew. Chem. Int. Ed. 2006, 45, 7876. (b) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138. (c) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178. (d) Xu, L.-W.; Li, L.; Shi, Z.-H. Adv. Synth. Catal. 2010, 352, 243.
- 10. For a review of MacMillan imidazolidinone catalyst, see: Lelais, G; MacMillan, D. W. C. *Aldrichimica Acta* **2006**, *39*, 79.
- (a) Hong, L.; Wang, L.; Sun, W.; Wong, K.; Wang, R. J. Org. Chem. 2009, 74, 6881. (b) Rueping, M.; Sugiono, E.; Merino, E. Chem. Eur. J. 2008, 14, 6329.