DOI QR코드

DOI QR Code

Variation in Residence Time and Water Exchange Rate by Release Time of Pollutants Over a Tidal Cycle in Masan Bay

조석 주기별 오염물질 방출에 따른 마산만의 체류시간 및 해수교환율 변화

  • Park, Sung-Eun (Marine Environment Management Division, National Fisheries Research & Development Institute) ;
  • Lee, Won-Chan (Marine Environment Management Division, National Fisheries Research & Development Institute) ;
  • Hong, Sok-Jin (Marine Environment Management Division, National Fisheries Research & Development Institute) ;
  • Kim, Hyung-Chul (Marine Environment Management Division, National Fisheries Research & Development Institute) ;
  • Kim, Jin-Ho (Marine Environment Management Division, National Fisheries Research & Development Institute)
  • 박성은 (국립수산과학원 어장환경과) ;
  • 이원찬 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 김형철 (국립수산과학원 어장환경과) ;
  • 김진호 (국립수산과학원 어장환경과)
  • Received : 2011.09.23
  • Accepted : 2011.11.16
  • Published : 2011.11.25

Abstract

Lagrangian particle transport model coupled with the EFDC have been performed to estimate the residence time and water exchange rate by release time of pollutants over a tidal cycle in Masan Bay. The modelled residence time for the whole bay was about 40 days, ranging from less than 20 days in the southern parts of Budo, to over 100 days in the upper parts of Somodo. The spatial difference of residence time was controlled by tidal residual currents and the distance to the bay channel. The area mean residence time during spring and neap tides was estimated to be about 36 days and 42 days, respectively. The time required for 30% exchange of water was calculated as ranging from 65 to 105 days by release time of pollutants.

EFDC와 라그랑쥐 입자추적모델을 이용하여 조석주기별로 오염물질의 방출 시점이 다를 경우에 대한 마산만의 체류시간 및 해수교환율의 정량적 차이를 계산하였다. 체류시간은 만 전체에 대해 약 40일이었고 그 범위는 부도 남쪽 해역에서 약 20일 이하, 소모도 상부에 위치하는 마산만 내측에서는 약 100일 이상으로 나타났다. 이러한 체류 시간의 공간적 차이는 주로 조석잔차류와 만 내측으로부터의 거리에 영향을 받는 것으로 밝혀졌다. 만 전체 면적에 대한 체류시간의 평균값은 대조기 및 소조기에 각각 약 36일과 42일로 나타났다. 해수교환율은 30%가 되기까지 걸리는 시간이 입자 방류 시점에 따라 최소 약 65일부터 최대 105일까지 약 40일 이상 차이가 나는 것으로 계산되었다.

Keywords

References

  1. 강주환, 박선중, 김양선, 소재귀, 2009, 해수유동모형의 조간대 모의 특성, 한국해안해양공학회, 21(5), 357-370.
  2. 고영찬, 김종인, 류청로, 2000, 부산항의 개발단계별 수질환경 변동특성에 관한 연구, 한국해양공학회지, 14(3), 11-19.
  3. 국토해양부, 경상남도, 2008, 마산만 특별관리해역 제1차 연안오염총량관리 기본계획, 1-234.
  4. 김종구, 김동명, 양재삼, 2000, Box 모델을 이용한 금강 하구해역의 물질수지 산정, 한국해양환경공학회지, 3, 76-90.
  5. 김종규, 곽경일, 정경호, 2008, 섬진강 하구역의 3차원 혼합특성 연구, 한국해양환경공학회지, 11(3), 164-174.
  6. 김차겸, 장선덕, 이종섭, 1994, 진해만 조류의 2차원 수리 및 수치모델링, 한국해양학회지, 19(2), 83-94.
  7. 박병수, 류청로, 김종화, 1998, 입자추적모형에 의한 내만에서의 해수 교환, 한국어업기술학회지, 34(4), 410-418.
  8. 박성은, 홍석진, 이원찬, 2009, Particle Tracking Model을 이용한 평균체류시간의 공간분포 계산, 한국해양공학회지, 23(2), 47-52.
  9. 서동일, 서미진, 구명서, 우재균, 2009, EFDC-Hydro와 WASP 7.2를 이용한 금강하류의 수리-수질 연계 모델링, 상하수도학회지, 23(1), 15-22.
  10. 서승원, 이화영, 유상철, 2010, 방조제 완공에 따른 호내부수질변화 모의, 한국해안해양공학회, 22(4), 258-271.
  11. 장선덕, 이문옥, 김종화, 박광순, 김복기, 임기봉, 1984, 진해만 동부해역의 해수유동, 국립수산진흥원 연구보고, 7-23.
  12. 허영택, 박진혁, 2009, EFDC 모형의 낙동강 하류부 수리해석 적용성 평가. 한국수자원학회, 42(4), 309-317.
  13. 홍석진, 이대인, 김동명, 박청길, 2000, 낙동강 하구해역에서의 단순박스모델에 의한 물질수지, 한국해양환경공학회지, 3, 50-57.
  14. 홍석진, 이원찬, 윤상필, 박성은, 조윤식, 권정노, 김동명, 2007, 마산만의 자생유기물 저감을 위한 단순박스모델의 적용, 해양환경안전학회지, 13, 111-118.
  15. Abdelrhman, M.A., 2005, Simplified modeling of flushing and residence times in 42 embayments in New England, USA, with special attention to Greenwich Bay, Rhode Island. Estuarine, Coastal and Shelf Science, 62, 339-351. https://doi.org/10.1016/j.ecss.2004.09.021
  16. Blumberg, A.F. and Mellor, G.L., 1987, A description of a threedimensional coastal ocean circulation model. In: N. Heaps, Editor, Three-Dimensional Coastal Ocean Models, American Geophysical Union, 208.
  17. Braunschweig, F., Martins, F., Chambel, P. and Neves, R., 2003, A methodology to estimate renewal time scales in estuaries: the Tagus Estuary case. Ocean Dynamics, 53(3), 137-145. https://doi.org/10.1007/s10236-003-0040-0
  18. Bricelj, V.M., and Lonsdale, D.J., 1997, Aureococcus anophagefferens: Causes and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters. Limnological Oceanography, 42, 1023-1038. https://doi.org/10.4319/lo.1997.42.5_part_2.1023
  19. Craig, P.M., 2004, User's manual for EFDC-Explorer. A pre/post processor for the environmental fluid.
  20. Craig, P.M., 2009, Implementation of a Lagrangian particle tracking sub-model for the environmental fluid dynamics code.
  21. Fukumoto, T., Kobayashi, N., 2005. Bottom stratification and water exchange in enclosed bay with narrow entrance. J. of Coastal Research, 21, 135-145.
  22. Hamrick, J.M., 1992, A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects, The College of William and Mary, VIMS, Special report 317.
  23. Jorgensen, B. B. and Richardson, K., 1996, Eutrophication in Coastal Marine Ecosystems. Coastal and Estuarine Studies, 52, American Geophysical Union, Washington, DC, 272.
  24. Josefson, A. B. and Rasmussen, B, 2000, Nutrient retention by benthic macrofaunal biomass of Danish estuaries: importance of nutrient load and residence time. Estuarine, Coastal and Shelf Science, 50, 205-216. https://doi.org/10.1006/ecss.1999.0562
  25. Liu, Z., Wei, H., Liu, G., Zhang, J., 2004. Simulation of water exchange in Jiaozhou Bay by average residence time aroach. Estuarine, Coastal and Shelf Science, 61, 25-35. https://doi.org/10.1016/j.ecss.2004.04.009
  26. Mellor, G.L. and Yamada, T., 1982, evelopment of turbulence closure model for geophysical fluid problems, Rev. Geophys. Space Phys., 20, 851-875. https://doi.org/10.1029/RG020i004p00851
  27. Monbet, Y., 1992, Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries, 15, 563-571. https://doi.org/10.2307/1352398
  28. Monsen N.E., Cloern, J.E. and Jucas, L.V., 2002, A comment on the use of flushing time, residence time, and age as transport time scales. Limnology and Oceanography, 47(5), 1545-1553. https://doi.org/10.4319/lo.2002.47.5.1545
  29. Moustafa, M.Z. and Hamrick, J.M., 2000, Calibration of the wetland hydrodynamic model to the everglades nutrient removal project. Water Quality and Ecosystem Modelling, 1, 141-167. https://doi.org/10.1023/A:1013938700446
  30. Nixon, S.W., Ammerman, J., Atkinson, L.P., Berounsky, V.M., Billen, G., Boicourt, W.C., Boynton, W.R., Church, T.M., Ditoro, D.M., Elmgren, R., Garber, J.H., Giblin, A.E., Jahnke, R.A., Owens, N.J.P., Pilson, M.E.O. and Seitzinger, S.P., 1996, "The fate of nitrogen and phosphorous at the land-sea margin of the North Atlantic Ocean". Biogeochemistry, 35, 141-180. https://doi.org/10.1007/BF02179826
  31. Park, K, Kuo, A.y. Shen, J., and Hamrick, J.M., 1995, A threedimensional hydrodynamic-eutrophication model (HEM-3D): description of water quality and sediment process submodels, SRAMOSE No. 327, VIMS/SMS, SWM, VA.
  32. Sheldon, J.E., Alber, M., 2002. A comparison of residence time calculations using simple compartment models of the Altamaha River Estuary, Georgia. Estuaries, 25(6B), 1304-1317. https://doi.org/10.1007/BF02692226
  33. Sisson, G.M., Shen, J., Kim, S.-C., Boon, John, D. and Kuo, A.Y., 1997, VIMS Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D): Alication of the Hydrodynamic Model to the York River System. SRAMSOE #341. SMS/VIMS, College of William and Mary, Gloucester Point, VA. 123.
  34. Takeoka, H., 1984, Fundamental concepts of exchange and transport time scales in a coastal sea, Continental Shelf Research, 3(3), 311-326. https://doi.org/10.1016/0278-4343(84)90014-1
  35. Zimmerman, J.T.F., 1976, Mixing and flushing of tidal embayments in the Western Dutch Wadden Sea, Part I: distribution of salinity and calculation of mixing time scales. Netherlands J. of Sea Research, 10, 149-191. https://doi.org/10.1016/0077-7579(76)90013-2

Cited by

  1. Dominance and Survival Strategy of Toxic Dinoflagellate Alexandrium tamarense and Alexandium catenella Under Dissolved Inorganic Nitrogen-limited Conditions vol.16, pp.1, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.1.25
  2. Comparison of Seawater Exchange Rate of Small Scale Inner Bays within Jinhae Bay vol.19, pp.1, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.1.74
  3. Modeling for Pollution Contribution Rate of Land based Load in Masan Bay vol.22, pp.1, 2016, https://doi.org/10.7837/kosomes.2016.22.1.059
  4. A Study of Distribution of Jellyfish by Particle Numerical Experiment in Masan Bay vol.22, pp.4, 2016, https://doi.org/10.7837/kosomes.2016.22.4.335
  5. Numerical simulation for dispersion of anthropogenic material near shellfish growing area in Geoje Bay vol.28, pp.3, 2016, https://doi.org/10.13000/JFMSE.2016.28.3.831
  6. Residence Time Variation by Operation of Sihwa Tidal Power Plant in Outer Sea of Sihwa Lake vol.29, pp.5, 2017, https://doi.org/10.9765/KSCOE.2017.29.5.247