Primary Productivity and Pigments Variation of Phytoplankton in the Seomjin River Estuary during Rainy Season in Summer

하계 강우기 섬진강 하구역의 일차생산력 및 식물플랑크톤 색소조성 변화

  • Received : 2011.08.30
  • Accepted : 2011.09.20
  • Published : 2011.09.30

Abstract

Field observations and culture experiments have been carried out during the rainy season (on the 6th, 8th and 27th July 2009) to examine changes in the primary productivity and associated plant pigments in the estuary of the Seom-jin River. Primary productivity was determined at four sampling stations along the salinity gradient. On 6th July (before heavy rain) primary productivity ranged from 689~1,169 mgC $m^{-2}$ $d^{-1}$. On the 8th, just after more than 216.5 mm of precipitation, euphotic layers at all stations were reduced to very shallow water because of the high concentration of suspended solids in the water. This resulted in dramatically decreased primary productivity down to as low as 12~32 mg C $m^{-2}$ $d^{-1}$. However, after the rain, primary productivity on the 27th ranged from 266~999 mgC $m^{-2}$ $d^{-1}$, demonstrating a fast recovery in the upper stream water to similar productivity levels to those before the rainy season. Concentration of fucoxanthin in the water was highest on the 6th July. Before the rain, concentration of the zeaxanthin, increased as the salinity decreased. Immediately after the heavy rain, the Chl b (Chlorophytes) concentration was higher at all sites than before the rainy season. The concentration of fucoxanthin decreased after the heavy rain. At the downstream site, peridinin (Dinoflagellates) were found. During the rainy season, the diatoms contributed to the primary productivity at all sites. However, after the rainy season, Chl b (Chlorophytes) and Peridinin (Dinoflagellates) increased, demonstrating the enhanced contribution of those species in addition to diatoms.

섬진강 하구역의 강우기 동안 일차생산력은 12~1,169 mgC $m^{-2}$ $d^{-1}$으로 넓은 범위를 보였으며 강우 전과 후의 일차생산력의 변화는 뚜렷하게 나타났다. 강우 전인 7월 6일에 가장 높은 생산력을 보였으며 상류정점에서 높은 일차생산력과 생리 활성도를 보였다. 집중호우 직후 일차 생산력은 현저히 감소하였으며 이러한 이유는 탁수의 영향이 전 수층으로 전이 되면서 식물플랑크톤 광합성 기작에 제한영향으로 적용되었음을 판단할 수 있다. 집중호우 19일 후의 일차생산력은 강우의 영향으로 유입된 탁도가 줄고 유광층 깊이가 깊어지면서 하류정점에서부터 회복되는 결과를 보였다. 또한 강우 전보다 식물플랑크톤의 생리활성도가 매우 좋음을 알 수 있었다. HPLC로 분석된 색소 조성 결과 Fuco가 전 정점에서 우점하는 것으로 나타났으며 현미경 결과와 비교 시 유사하였다. 일차 생산력과 HPLC로 분석된 지표색소 결과를 비교하였을 시 규조류가 일차생산력에 가장 큰 기여를 했을 것으로 보인다. 본 연구에서는 하계 한반도의 우세한 기후적 특징인 강우기 동안 섬진강 하구역에서 일차생산력의 시공간적 변동과 식물플랑크톤의 군집구조의 변화특성을 파악하였다. 이러한 연구 결과는 강우기 섬진강 수 생태 환경 변화를 이해하기 위한 기초자료로 활용될 수 있을 것으로 판단되며, 향후 수질관리 및 수 생태계 에너지 흐름과 물질순환에 대한 연구를 위한 유용한 자료로 활용될 것으로 사료된다.

Keywords

References

  1. 국토해양부. 2010. 하구역 관리체제 구축 연구(III), 섬진강 하구(제1권 자연과학 연구분야), p. 153-190.
  2. Alpine, A.A. and J.E. Cloern. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnology and Oceanography 37: 946-955. https://doi.org/10.4319/lo.1992.37.5.0946
  3. Armstrong, R.A. 1994. Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of an ecosystem model with multiple food chain. Limnol. Oceanogr. 39(3): 597-608. https://doi.org/10.4319/lo.1994.39.3.0597
  4. Avnimelech, Y., B.W. Troeger and L.W. Reed. 1982. Mutual flocculation of algae and clay. Evidence and implication. Science 216: 63-65. https://doi.org/10.1126/science.216.4541.63
  5. Caraco, N.F., J.J. Cole, P.a. Raymond, D.L. Strayer, M.L. Pace, S.E.G. Findlay and D.t. Fisher. 1997. Zebra mussel invation in a large, turbid river: Phytoplankton response to increased grazing. Ecology 78(2): 588-602. https://doi.org/10.1890/0012-9658(1997)078[0588:ZMIIAL]2.0.CO;2
  6. Carpenter, S.R., J.F. Kitchell, J.R. Hodgson, P.A. Cochran, J.J. Elser, M.M. Elser, D.M. Lodge, D. Kretchmer, X. He and C.N. von Ende. 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863-1876. https://doi.org/10.2307/1939878
  7. Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7: 1376-1387.
  8. Falkowski, P.G. and J. LaRoche. 1991. Acclimation to spectral inradiance in algae. Journal of Phycology 27: 8-14. https://doi.org/10.1111/j.0022-3646.1991.00008.x
  9. Gibb, S.W., D.G. Cummings, X. Irigoien, R.G. Barlow, R. Fauzi and C. Mantoura. 2001. Phytoplankton pigment chemotaxonomy of northeastern Altlantic. Deep Sea ResearchII 48: 795-823. https://doi.org/10.1016/S0967-0645(00)00098-9
  10. Gieskes, W.W.C. and G.W. Kraay. 1983. Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments. Marine Biology 75: 179-185. https://doi.org/10.1007/BF00406000
  11. Grobbelaar, J.U. 1990. Modelling phytoplankton productivity in turbid waters with small euphotic to mixing depth ratios. Journal of Plankton Research 12: 923-931. https://doi.org/10.1093/plankt/12.5.923
  12. Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki and S. Ichimura. 1983. Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar. Biol. 73: 31-36. https://doi.org/10.1007/BF00396282
  13. Holm-Hansen, o., C.J. Lorenzen, R.W. Holmes, J.D.H. Strickland. 1965. Fluorometric determination of chlorophyll. Jounal du Conseil Permanent International Pour L'Exploration de ra Mer 30: 3-15. https://doi.org/10.1093/icesjms/30.1.3
  14. Horne, A.J. and C.R. Goldman. 1994. Limnology, 2nd ed. McGraw-Hill, Inc. New York.
  15. Jeffrey, S.W., R.F.C. Mantoura and S.W. Wright. 1997a. Phytoplankton Pigments in Oceanography (Jeffrey, S.W. et al., eds.). UNESCO Publishing, Paris.
  16. Jeffrey, S.W. and M. Vesk. 1997b. Introduction to marine phytoplankton and their pigment signatures, p. 37-84. In: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (Jeffrey, S.W. et al. eds.). UNESCO, Paris.
  17. Jeffrey, S.W., R.F.C. Mantoura and S.W. Wright. 1997c. Monographs on oceanographic methodology, p. 74-75. In: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods (Jeffrey, S.W. et al., eds.). UNESCO, Paris.
  18. Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen. E. lEskinen, R. lignell, B. Marcussen and T. Tamminen. 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38(5): 893-905. https://doi.org/10.4319/lo.1993.38.5.0893
  19. Kocum, E., G.J.C. Underwood and D.B. Nedwell. 2002. Simultaneous measurement of phytoplanktonic primary production, nutrient and light availability along a turbid, eutrophic UK east coast estuary (the Colne estuary). Marine Ecology Progress Series 231: 1-12. https://doi.org/10.3354/meps231001
  20. Kwon, K.Y., P.G. Lee, C. Park, C.H. Moon and M.O. Park. 2001. Biomass and species composition of phytoplankton and zooplankton along the salinity gradients in the Seomjin River estuary. Journal of the Korea Society of Oceanography 6(2): 93-102.
  21. Lee, Y.J., M.S. Kim, E.J. Won and K.H. Shin. 2006. An application of 13C tracer for the determination of size fractionated primary productivity in upper stream of Lake Shihwa. Korean Journal of Limnology 39(1): 93-99.
  22. Lee, Y.J., M.S. Kim, K.H. Shin and S.J. Hwang. 2008. An application of $^{13}C$ tracer for the determination of primary productivity and fatty acid production rate in Shingu Reservoir. Korea Journal of Limnology 41(Special issue): 21-26.
  23. Lorenzen, C.J. 1967. Determination of chlorophyll and phaeopigments spectrophotometric equations. Limnology Oceanography 12: 343-347. https://doi.org/10.4319/lo.1967.12.2.0343
  24. McLusky, D.S. 1989. The estuarine ecosystem, 2d ed. New York, Chapman and Hall.
  25. Odum, E.P. 1993. Ecologe and our Endangered Life-Support Systems. Sinauer Associates, Inc., p. 301.
  26. Oh, S.J., C.H. Moon and M.O. Park. 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum Tidal flat, West Coast of Korea. J. Kore. Fish. Soc. 37(3): 215-225.
  27. Park, J.W., K.L. Lee, J.S. Choi and H.S. Kim. 2005. Dynamics of phytoplankton community after formation of turbid water in Lake Imha. Korean Journal of Limnology 38(3): 429-434.
  28. Park, J.W., S.H. Yu, S.Y. Kim, J.E. Lee and E.W. Seo. 2008. Effect of turbid water on the phytoplankton community in Imha Reservoir. Journal of Life Science 18(12): 1671-1678. https://doi.org/10.5352/JLS.2008.18.12.1671
  29. Park, M.O. and J.S. Park. 1997. HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. J. Oceanol. Soc. Korea 32: 46-55.
  30. Park, M.O., C.H. Moon, S.Y. Kim, S.R. Yang, K.Y. Kwon and Y.W. Lee. 2001. The species composition of phytoplankton along the salinity gradients in the Seomjin River estuary in autumn, 2000: Comparison of HPLC analysis and microscopic observations. Algae 16(2): 179-188.
  31. Parsons, T.R., Y. Maita and C.M. Lalli. 1984. Amaual of chemical and biological methods for seawater analysis. Pergamon Press, 173 pp.
  32. Peterson, D.H. and J.P. Festa. 1984. Numerical simulation of phytoplankton productivity in partially mixed estuaries. Estuarine, Costal and Shelf Science 19: 563-589. https://doi.org/10.1016/0272-7714(84)90016-7
  33. Rajdeep, R., A. Pratihary, G. Mangesh, S.W.A. Naqvi. 2006. Spatial variation of phytoplankton pigments along the south west coast of India. Estuarine, Coastal and Shelf Science 69: 189-195. https://doi.org/10.1016/j.ecss.2006.04.006
  34. Shin, Y.S., H.Y. Soh and B.K. Hyun. 2005. Effect of salinity change on biological structure between primary producer and herbivores in water column. Journal of the Korea Society of Oceanography 10(2): 113-123.
  35. Song, E.S., Y.S. Shin, N.I. Jang and J.B. Lee. 2010. Assessment of nutrient and Light Limitation of phytoplankton in the Youngsan Lake. Korean Journal of Limnology 43(1): 35-43.
  36. Steeman-Nielsen, E. 1952. The use of radioactive carbon (C-14) for measuring organic production in the sea. J. Cons. Perma. Int. Explor. Mer. 18: 117-140. https://doi.org/10.1093/icesjms/18.2.117
  37. Susuki, K., N. Handa, H. Kiyosawa and J. Ishizaka. 1995. Distribution of the prochlorophyte Prochlorococcus in the central Pacific Ocean as measured by HPLC. Limnol. Oceanogr. 40: 983-989. https://doi.org/10.4319/lo.1995.40.5.0983
  38. Yang, S.Y., H.S. Song, K.C. Kim, C. Park and C.H. Moon. 2005. Changes in environmental factors and primary productivity in the Seomjin River estuary. Journal of the Korea Society of Oceanography 10(3): 164-170.
  39. Yi, H.H., Y.S. Shin, S.Y. Yang, N.I. Chang and D.H. Kim. 2007. Size-structure and primary productivity of phytoplankton from major lakes in Sumjin and Yeongsan watershed. Korean Journal of Limnology 40(3): 419-430.
  40. Wolfsy, S.C. 1983. A simple model topredict extinction coefficients and phyoplankton biomass in eutrophic waters. Limnology Oceanography 8: 1144-1155.
  41. Wong, C.K. and C.K. Wong. 2003. HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong. Chemosphere 52: 1633-1640. https://doi.org/10.1016/S0045-6535(03)00503-4
  42. Zapata, M., F. Rodriguez and J.L. Garrido. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine containing mobile phases. Marine Ecology Progress Series 195: 29-45. https://doi.org/10.3354/meps195029