DOI QR코드

DOI QR Code

Application of Depth-averaged 2-D Numerical Model for the Evaluation of Hydraulic Effects in River with the Riparian Forest

하안림 영향 검토를 위한 수심평균 2차원 수치모형 적용

  • 김지성 (한국건설기술연구원 하천해안항만연구실) ;
  • 김원 (한국건설기술연구원 하천해안항만연구실) ;
  • 김혜주 (김혜주자연환경계획연구소)
  • Received : 2010.12.27
  • Accepted : 2011.01.29
  • Published : 2011.04.30

Abstract

In this study, FESWMS FST2DH model was used to analyze the change of flow characteristics after making the riparian forest. The additional flow resistance is calculated based on the drag-force concept acting on each tree and the lateral momentum transfer between planted and non-planted zone could be satisfactorily reproduced by parabolic turbulence model in this depth-averaged 2-D numerical model. For model validation, the simulated velocities were compared with the measured data, showing good agreement in both tree density cases of experiments. The previous method using a proper Manning's n coefficient gives reasonable solutions only to evaluate the conveyance, but the calculated approach velocity at each tree was different from realistic value. The proposed procedure could be widely used to evaluate hydraulic effects of riparian trees in practical engineering.

본 연구에서는 평수위면을 따라 하안림을 조성할 경우 발생할 수 있는 흐름특성의 변화를 검토하기 위하여 FESWMS FST2DH 모형을 이용하였다. FESWMS 모형은 개별 수목에 작용하는 항력을 직접 계산하여 수목으로 인한 흐름저항의 증가를 계산하고, 식재부와 비식재부 영역간의 운동량 교환을 포물선형 난류모형으로 비교적 정확히 해석할 수 있는 수심평균 2차원 수치모형이다. 모형의 적용성 검증을 위하여 홍수터 식재후 횡방향 유속변화 수리실험 결과와 비교하였고, 두 가지 수목밀도의 경우 모두 계산 유속은 실측 유속과 잘 일치하였다. 실제 하천내 수목 식재구역에 적절한 Manning 계수를 적용함으로써 식재후 수위 및 유속변화를 추정하는 기존 방법은 본 연구결과와 비교하여 홍수위 변화는 거의 유사한 결과를 나타내었으나, 식재부 유속 산정에는 다소 차이가 발생함을 확인하였다. 본 연구에서 수행된 수목영향 평가절차는 향후 하천내 수목식재를 계획할 경우 실무적으로 널리 활용될 것으로 기대된다.

Keywords

References

  1. 건설교통부(2007) 하천에서 나무심기 및 관리에 관한 기준(안).
  2. 국토해양부(2009) 낙동강수계 하천기본계획(변경) [낙동강(금호강합 류점-하구), 밀양강, 양산천] 보고서. 부산지방국토관리청.
  3. 국토해양부, 한국건설교통기술평가원(2008) 홍수터 보전/복원 기술 연구보고서(부록). 건설기술혁신사업 제2차년도 연차보고서.
  4. 국토해양부, 한국건설교통기술평가원(2010) 홍수터 보전/복원 기술 연구보고서. 건설기술혁신사업 제4차년도 연차보고서.
  5. 김지성, 김 원, 이혜은, 김은미(2009) 수목에 의한 흐름저항 평가를 위한 1차원 상류이송 음해기법. 한국수자원학회 학술발표회논문집, 한국수자원학회, pp. 822-826.
  6. 김태범, 배혜득, 최성욱(2010) 식생 수로에서의 수리특성 모의를 위한 수심적분 2차원 수치모형의 개발 및 적용. 대한토목학회논문집, 대한토목학회, 제30권 제6B호, pp. 607-615.
  7. 노준우, 신현호, 김호준(2010) 소양강 댐 직하류 하천의 식생 영향에 의한 통수능 분석, 대한토목학회논문집, 대한토목학회, 제30권 제6B호, pp. 533-540.
  8. 우효섭, 오종민(2005) 수변완충지대를 이용한 비점오염물질 유입 저감과 수변서식처 조성. 한국수자원학회지, 한국수자원학회, 제38권 제3호, pp. 29-36.
  9. 이종석, 김병찬(2010) 하천규모에 따른 식생모델의 홍수위 검토. 대한토목학회논문집, 대한토목학회, 제30권 제5B호, pp. 509- 518.
  10. 이준호, 윤세의(2007) 개수로에서 식생에 의한 수리특성 변화에 관한 실험적 연구. 한국수자원학회논문집, 한국수자원학회, 제40권 제3호, pp. 265-276.
  11. 최성욱, 강형식(2007) 수심적분 모형을 이용한 침수식생 수로의 흐름 및 유사이동 모의. 대한토목학회논문집, 대한토목학회, 제27권 제6B호, pp. 621-629.
  12. Barnes, H.H. (1967) Roughness characteristics of natural channels, U.S. Geological Survey Water-Supply Paper 1849.
  13. Bittmann, E. (1965) Grundlagen und methoden des biologischen Wasserbaus. In: Bundesanstalt f. Gewaesserkunde(Hrsg.): Der biologische Wasserbau an den Bundesstrassen. Stuttgart.
  14. Chow, V.T. (1959) Open-Channel Hydraulics, McGraw-Hill, New York.
  15. Froehlich, D.C. (1989) User's Manual for FESWMS FST2DH, Twodimensional Depth-averaged Flow and Sediment Transport Model. U.S. Department of Transportation, Federal Highway Administration, McLean, Virginia.
  16. Hicks, D.M. and Mason, P.D. (1998) Roughness characteristics of New Zealand Rivers, National Institute of Water and Atmospheric Research Ltd, Christchurch, New Zealand.
  17. Iowa State University (1997) Stewards of our Streams-Buffer strips design, establishment, and maintenance.
  18. Kraus, W. (1994) Uferstreifen-unverzichtbare Bestandteile von Tallandschaften. Z.f. Kulturtechnik und landentwicklung, Vol. 35, pp. 130-139.
  19. Leu, J.M., Chan, H.C., Jia, Y., He, Z., and Wang, S.S.Y. (2008) Cutting management of riparian vegetation by using hydrodynamic model simulations. Advances in Water Resources, Vol. 31. pp. 1299-1308. https://doi.org/10.1016/j.advwatres.2008.06.001
  20. MUNR, Ministerium fur Umwelt, Naturschutz und Raumordnung des Landes Brandenburg (1997) Richtlinie f. die Naturnahe Unterhaltung u. Entwicklung v. Fliessgewaesser im Land Brandenburg.
  21. Petryk, S. and Bosmajian, G. III. (1975) Analysis of flow through vegetation. Journal of the Hydraulics Division, ASCE, Vol. 101(HY7), pp. 871-884.
  22. Rastogi, A.K. and Rodi, W. (1978) Predictions of heat and mass transfer in open channels, Roughness characteristics of natural channels, ASCE, Vol. 104(HY3), pp. 397-420.
  23. Tsujimoto, T. (1999) Fluvial process in streams with vegetation. Journal of Hydraulic Research, IAHR, Vol. 37, No. 6, pp. 789- 803. https://doi.org/10.1080/00221689909498512
  24. Tsujimoto, T. and Kitamura, T. (1995) Lateral bed-load transport and sand-ridge formation near vegetation zone in an open channel. Journal of Hydroscience and Hydraulic Engineering, JSCE, Vol. 13, No. 1, pp. 35-45.
  25. USDA, Natural Resources Conservation Service Plant Material Service (1998) The Practical Stream Bioengineering Guide, Aberdeen, Idaho, USA.
  26. Wu, W. and Wang. S.S.Y. (2004) A depth-averaged two-dimensional numerical model of flow and sediment transport in open channels with vegetation. In: Bennett, S.J. and Simon, A. (Eds.), Riparian Vegetation and Fluvial Geomorphology. Water Science and Application 8. American Geophysical Union, Washington, DC, pp. 253-265.